

Weather-compensated system control

VRC 700/6

0020262579_01 - 28.11.2022

Installation instructions

Contents

4	Safety 4
1 1.1	Intended use 4
1.1	General safety information
1.2	Regulations (directives, laws, standards)
2	Notes on the documentation
2.1	Observing other applicable documents
2.2	Storing documents
2.2	Validity of the instructions
2.4	Nomenclature
3	Product description
3.1	Data plate
3.2	CE marking
4	Set-up
4.1	Checking the scope of delivery
4.2	Selecting the lines
4.3	Determining the installation site of the outdoor
4.0	temperature sensor
4.4	Installing the system control in the living room 6
4.5	Installing the system control in the heat
	generator 7
5	Electrical installation 7
5.1	Connecting the outside temperature sensor
5.2	Polarity 7
5.3	Connecting a system control to the heat generator
5.4	Connecting a system control to the ventilation unit
6	Start-up
6.1	Preparatory work for start-up
6.2	Starting up the heating installation
6.3	Changing the settings later
7	Operating and display functions 9
7.1	Resetting to factory setting 9
7.2	Service information
7.3	System 10
7.4	Basic system diagram configuration 12
7.5	Additional module 13
7.6	Heat generator 1, heat pump 1, additional
	module 13
7.7	HEATING 1 14
7.8	ZONE1 16
7.9	DHW circuit 17
7.10	Buffer cylinder 18
7.11	Solar circuit
7.12	Solar cylinder 1 20
7.13	2nd differential temperature control
7.14	Ventilation
7.15	Selecting the wiring centre for sensor/actuator test 21
7.16	Activating the screed-drying function 21
7.17	Changing the code for Installer level 21

8	Handing over to the end user	21
8.1	Handing the product over to the end user	21
9	Troubleshooting	22
9.1	Troubleshooting measures	22
9.2	Maintenance message	22
10	Decommissioning	22
10.1	Decommissioning the heating installation	22
11	Recycling and disposal	22
12	Customer service	23
13	Technical data	23
13.1	System control	23
Append	lix	. 24
Α	Setting values for basic system diagram, VR 70 and VR 71	24
A.1	Gas-/oil-fired condensing boiler (eBUS)	24
A.2	Gas-/oil-fired condensing unit (eBUS) and solar hot water support	24
A.3	Gas-/oil-fired condensing unit (eBUS) and	
	solar hot water and heating support	24
A.4	aroTHERM or flexoTHERM	24
A.5	aroTHERM and domestic hot water cylinder downstream of low loss header	25
A.6	aroTHERM or flexoTHERM and solar hot water support	25
A.7	aroTHERM or flexoTHERM and solar hot water and heating support	25
A.8	aroTHERM with system separation	25
A.9	aroTHERM with auxiliary heater and system separation	25
A.10	aroTHERM with system separation and solar hot water support	26
A.11	geoTHERM 3 kW, hot water generation using a gas-fired condensing boiler (eBUS)	26
A.12	aroTHERM or flexoTHERM , hot water generation using a gas-fired condensing boiler (eBUS)	26
A.13	aroTHERM with system separation, hot water generation using a gas-fired condensing boiler (eBUS)	26
A.14	aroTHERM or flexoTHERM , hot water generation using a heat pump and gas-fired condensing boiler (eBUS)	27
A.15	aroTHERM with system separation, hot water generation using a heat pump and gas-fired	
A.16	condensing boiler (eBUS) aroTHERM and gas-fired condensing boiler (eBUS), heat pump cascade option	27 27
в	Overview of the setting options	28
B.1	Installer level	28
B.2	Functions for the heating circuit	31
C	Connecting the actuators, sensors and sensor assignment for the VR 70 and VR	- 1
	71	32
C.1	Legend for connecting the actuators and sensors	32
C.2	Connecting the actuators and sensors to VR 70	33
C.3	Connecting the actuators to VR 71	33

C.4	Connecting the sensors to VR 71	33
C.5	VR 70 sensor assignment	33
C.6	VR 71 sensor assignment	34
D	Overview of the fault messages and faults	34
Е	Maintenance messages	36
Index		. 37

1 Safety

1.1 Intended use

In the event of inappropriate or improper use, damage to the product and other property may arise.

The product is intended for using an eBUS interface to control a heating installation with heat generators from the same manufacturer.

- observance of accompanying operating, installation and maintenance instructions for the product and any other system components
- installing and setting up the product in accordance with the product and system approval
- compliance with all inspection and maintenance conditions listed in the instructions.

Intended use also covers installation in accordance with the IP code.

Any other use that is not specified in these instructions, or use beyond that specified in this document, shall be considered improper use. Any direct commercial or industrial use is also deemed to be improper.

Caution.

Improper use of any kind is prohibited.

1.2 General safety information

1.2.1 Risk caused by inadequate qualifications

The following work must only be carried out by competent persons who are sufficiently qualified to do so:

- Set-up
- Dismantling
- Installation
- Start-up
- Inspection and maintenance
- Repair
- Decommissioning
- Proceed in accordance with current technology.

The competent person must be approved at the time by the "Health and Safety Executive".

1.2.2 Risk of material damage caused by frost

 Do not install the product in rooms prone to frost.

1.2.3 Danger due to malfunctions

- Install the system control in a location where it is not covered by furniture, curtains, or other objects.
- If room temperature modulation is activated, advise the end user that, in the room where the system control is mounted, all the thermostatic radiator valves must be fully open.
- At lengths of 10 m or more, power supply cables must be laid separately from sensor or bus lines.

1.2.4 Risk of material damage caused by using an unsuitable tool

Use the correct tool.

1.3 Regulations (directives, laws, standards)

 Observe the national regulations, standards, directives, ordinances and laws.

2 Notes on the documentation

2.1 Observing other applicable documents

 Always observe all the operating and installation instructions included with the system components.

2.2 Storing documents

Pass these instructions and all other applicable documents on to the end user.

2.3 Validity of the instructions

These instructions apply only to:

VRC 700/6 - article number

Great Britain	0020184838

2.4 Nomenclature

The following terms are used for simplification:

- Heat pump: This refers to all heat pumps.
- Hybrid heat pump: This refers to the VWS 36/4 230 V and VWL 35/4 S 230 V hybrid heat pumps.
- System control: This refers to the VRC 700 system control.
- Remote control: If this refers to the VR 91 remote control.

3 Product description

3.1 Data plate

The data plate is located on the product's PCB and is no longer accessible from the outside after the product has been installed in the boiler or mounted on a wall in the living area.

The data plate contains the following information:

Information on the data plate	Meaning
Serial number	for identification; 7th to 16th digits = product article number
VRC 700/6	Product designation
V	Operating voltage
mA	Current consumption
i	Read the instructions

3.2 CE marking

CE

The CE marking shows that the products comply with the basic requirements of the applicable directives as stated on the declaration of conformity.

The declaration of conformity can be viewed at the manufacturer's site.

4 Set-up

4.1 Checking the scope of delivery

Quantity	Contents
1	System control
1	VRC 693 outdoor temperature sensor or VRC 9535 outdoor temperature sensor
1	Fastening material (2 bolts and 2 wall plugs)
1	6-way edge connector
1	3-pin pin header connector
1	Documentation

• Check that the scope of delivery is complete and intact.

4.2 Selecting the lines

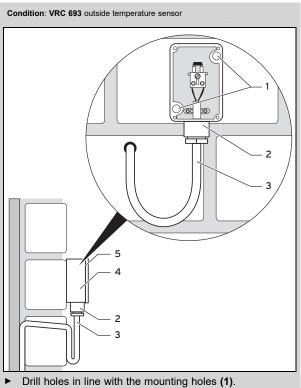
- Use standard commercial lines for the wiring.
- ► Do not use flexible lines for mains voltage supply lines.
- Use insulation cables for mains voltage supply lines (e.g. NYM 3 x 1.5).

Line cross-section

eBUS line (extra-low voltage)	≥ 0.75 mm²
Sensor line (extra low voltage)	≥ 0.75 mm²

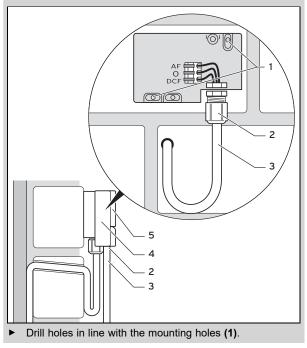
Line length

Sensor lines	≤ 50 m
Bus lines	≤ 125 m


4.3 Determining the installation site of the outdoor temperature sensor

- Choose an installation site that generally meets the following requirements:
 - not fully protected from wind
 - not particularly draughty
 - not in direct sunlight
 - not affected by heat sources
 - on a north or north-west facing façade
 - in buildings with up to three floors, it should be located two-thirds of the way up the façade
 - in buildings with more than three floors, it should be fitted between the second and third floor

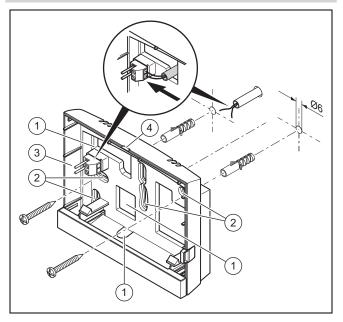
4.3.1 Installing the outside temperature sensor


1. Mark the position on the wall.

2. Alternatives 1:

2. Alternatives 2:

Condition: VRC 9535 outside temperature sensor



- 3. Route the connection cable (3) in accordance with the illustration.
- 4. Remove the housing cover (5).
- 5. Undo the cap nut **(2)** and slide the connection cable through the cable duct from below.
- 6. Tighten the cap nut.
 - The seal in the cable duct adapts to the diameter of the cable used.
- 7. Connect the outside temperature sensor. $(\rightarrow Page 7)$
- 8. Place the seal between the wall-mounting base and the housing cover.
- 9. Secure the housing cover.

4.4 Installing the system control in the living room

Condition: System control PCB without connected 3-pin header

- Install the system control on an interior wall of the main living room in such a way that perfect recording of the room temperature is ensured.
 - Installation height: 1.5 m

Openings for grommet
 Mounting openings

Pin header with terminals for the eBUS line Opening slot

1. Screw in the wall base in accordance with the illustration.

3

4

2. Connect the eBUS line. $(\rightarrow \text{Page 7})$

3. Carefully push the system control into the wall base.

4.5 Installing the system control in the heat generator

Note

If you have installed a heating installation with a hybrid heat pump, you must install the system control in the living area.

Condition: The heat generator is not connected to the eBUS via the VR 32.

- Remove the control panel fascia from the heat generator for the control module.
- 1. When installing the system control in the heat generator's electronics box, proceed as described in the installation instructions for the heat generator.

2. Alternatives 1:

Condition: Vertical plug-in connections with pins in the heat generator's electronics box, System control PCB without connected 3-pin header

 Carefully push the system control into the plug-in connection of the electronics box.

2. Alternatives 2:

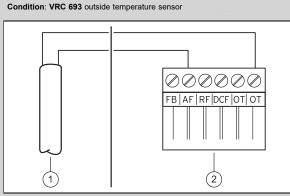
Condition: Horizontal plug-in connections with no pins on the heat generator's electronics box, System control PCB with horizontally connected 3-pin header

- Carefully push the system control with the connected 3pin header connector into the plug-in connection of the electronics box.
- 3. Connect the outside temperature sensor. (\rightarrow Page 7)

5 Electrical installation

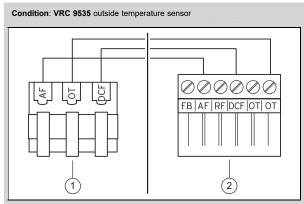
Only qualified electricians may carry out the electrical installation.

5.1 Connecting the outside temperature sensor



Note

If an additional module has been connected, pay attention to the instructions for the additional module when installing the outside temperature sensor electrically.


1. When connecting the outside temperature sensor, proceed as described in the installation instructions for the heat generator.

2. Alternatives 1:

 Connect the connection cable to the terminals on the outside temperature sensor (1).

2. Alternatives 2:

- Connect the connection cable to the terminal block on the outside temperature sensor (1).
- 3. Connect the connection cable to the 6-pin edge connector on the heat generator (2).
- 4. Route the connection cable with the 6-pin edge connector into the heat generator's electronics box.
- 5. Connect the 6-pin edge connector to slot X41 of the electronics box PCB.

5.2 Polarity

When connecting the eBUS line, there is no need to pay attention to the polarity. If the connection cables are switched over, communication will not be adversely affected.

5.3 Connecting a system control to the heat generator

- 1. When opening the electronics box in the heat generator, proceed as described in the installation instructions for the heat generator.
- 2. Connect the eBUS line to the eBUS terminals in the system control's wall base.
- 3. Connect the eBUS line to the eBUS terminals in the heat generator.

5.4 Connecting a system control to the ventilation unit

1. When connecting the system control to the ventilation unit, proceed as described in the installation instructions for the ventilation unit.

Condition: Ventilation unit connected to the eBUS without VR 32, Ventilation unit without eBUS heat generator

- Connect the eBUS line to the eBUS terminals in the system control's wall base.
- Connect the eBUS line to the eBUS terminals on the ventilation unit.

 $\label{eq:condition} \begin{array}{l} \mbox{Condition}: \mbox{Ventilation unit connected to the eBUS with VR 32}, \mbox{Ventilation unit with up to two eBUS heat generators} \end{array}$

- Connect the eBUS line to the eBUS terminals in the system control's wall base.
- Connect the eBUS line to the eBUS of the heat generator.
- Set the address switch for the VR 32 in the ventilation unit to position 3.

Condition: Ventilation unit connected to the eBUS with VR 32, Ventilation unit with more than two eBUS heat generators

- Connect the eBUS line to the eBUS terminals in the system control's wall base.
- Connect the eBUS line to the common eBUS on the heat generator.
- Determine the highest possible position on the address switch of the VR 32 for the connected heat generator.
- Set the address switch of the VR 32 in the ventilation unit to the second highest position.

6 Start-up

6.1 Preparatory work for start-up

All the following preparatory work for starting up the heating installation has been carried out:

- The system control and outdoor temperature sensor have been installed and wired.
- Start-up of all system components (except for the system control) is complete.
- The installation assistant is at the Language query.

6.2 Starting up the heating installation

The system control's installation assistant takes you through a list of functions. For each function, you should choose the set value that is best suited to the heating installation being installed.

You must not alter the settings of the functions listed below. The installation assistant will configure these functions according to the values you enter.

6.2.1 Language

You can set the language that you understand best. After start-up, set the language that the end user understands best.

Selecting the language (→ Operating instructions)

6.2.2 Date

You can use this function to set the system date. All functions that contain a date relate to the set date.

Setting the date (→ Operating instructions)

6.2.3 Time

You can use this function to set the system time. All functions that contain a time relate to the set time.

Setting the time (→ Operating instructions)

6.2.4 Have the installation assistants for all system components finished? Press OK to confirm

You have the option to start up system components that have not yet been started up. Until a system component is started up, the system control does not detect this system component and cannot communicate with this system component.

6.2.5 Searching for eBUS components ...please wait...

The system control searches for system components that communicate via eBUS. The system components that are detected by the system control appear under **Components found**. The system control does not show all system components that are connected to eBUS.

6.2.6 Heating curve

In heating installations with a heat pump, the heat curve for all heating circuits is 0.6.

In all mixed heating circuits with boilers, the heat curve is 0.6.

In all direct heating circuits with boilers, the heat curve is 1.2. Setting the heating curve (\rightarrow Page 15)

6.2.7 Domestic hot water

In heating installations with heat pumps, the desired temperature of the domestic hot water is 55 $^\circ\text{C}.$

In heating installations with heat generators, the desired temperature of the domestic hot water is 60 °C.

Setting the target cylinder temperature (domestic hot water) $(\rightarrow$ Page 17)

6.2.8 Zone assignment

The installation assistant assigns zones to the system control and the connected remote controls.

Examples of zone assignment:

No remote control: The system control is always assigned Zone 1.

One remote control: The remote control is assigned Zone 1, the system control is assigned Zone 2.

Two remote controls: Remote control 1 is assigned Zone 1, remote control 2 is assigned Zone 2 and the system control is assigned Zone 3.

The system control is always assigned the next highest zone after the remote controls.

Assigning a zone (\rightarrow Page 17)

6.2.9 Configuring the VR 70

The installation assistant has configured the inputs and outputs for all of the ${\bf VR}$ 70 units that are located in the heating installation.

In combination with the **VR 71**, the installation assistant sets the set value 5 (two mixed heating circuits) for all of the **VR 70** units that are located in the heating installation.

Configuring the inputs and outputs of the VR 70 (\rightarrow Page 12)

6.2.10 Config.: VR71

The installation assistant has configured the inputs and outputs of the $\ensuremath{\text{VR 71}}$.

Configuring the inputs and outputs of the **VR 71** (\rightarrow Page 12)

6.2.11 Zone activated

The installation assistant has activated the relevant zones and deactivated the zones that are not required.

Deactivating the zone $(\rightarrow \text{Page 16})$

6.2.12 Type of circuit

The installation assistant specifies which function (inactive or heating) the heating circuits are given. If you require a different setting for one of the heating circuits, you will need to change the function of this heating circuit later. You must check whether the automatic zone assignments are correct.

Setting **Type of circuit** (\rightarrow Page 14)

6.2.13 Checking the actuators and sensors

If the wiring centre (**VR 70** or **VR 71**) is installed, a list of the actuators and sensors that you can check appears at the end of the configuration.

If both wiring centres (**VR 70** and **VR 71**) are installed, a list of the actuators and sensors for the **VR 71** appears at the end of the configuration.

There can be different entries behind the sensors.

- OK: The system control has detected a sensor.
- ??: The system control is expecting a sensor that has not been installed.
- -: The sensor is not installed.
- (Blank): The system control is unable to check whether the sensor is installed correctly.
- On: The input at the terminals for the heat demand is open.
- Off: The input at the terminals for the heat demand has short-circuited.

6.2.14 Completing the installation assistant

Once you have gone through the installation assistant, Inst.assist. finished. Continue with: appears on the display

System configuration: The installation assistant switches to the system configuration for the installer level, in which you can further optimise the heating installation.

System start: The installation assistant switches to the basic display and the heating installation works with the values you have set.

Sensor/actuator test: The installation assistant switches to the sensor/actuator test function. You can test the sensors and actuators here.

Selecting the wiring centre for sensor/actuator test (\rightarrow Page 21)

6.3 Changing the settings later

All settings that you have made via the installation assistant can be changed again at a later date via the operator or installer operating level.

Installer level (\rightarrow Page 28)

Operating levels (-> Operating instructions, Appendix A.2)

7 Operating and display functions

Note

l

The functions described in this section are not available for all system configurations.

The system control has a level for the end user and a level for the competent person.

The setting and read-out options for the end user, the operating concept and an operating example are described in the operating instructions for the system control.

The setting and read-out options for the competent person can be found via **Menu** \rightarrow **Installer level Enter code**.

If you do not know the code, you can clear the code using the factory setting (\rightarrow Page 9) function. All the set values will be lost if you do this.

Installer level (→ Page 28)

The path details given at the start of each function description indicate how you reach this function in the menu structure. The square brackets contain the level of detail to which the function belongs.

The description of the functions for **HEATING 1**, **ZONE1**, **Heat pump** 1, **Heat generator 1** and **Solar cylinder 1** applies representatively for all existing heating circuits, zones, heat pumps, heat generators and solar cylinders. If a function applies only for certain heating circuits, zones, heat pumps, heat generators and solar cylinders, this is noted for that function.

7.1 Resetting to factory setting

You can use this function to reset all the set values or just the times in the time programmes.

You can find a description of the **Default setting** function in the operating instructions.

- Selecting Menu → Basic settings → Default setting takes you to the end user level for the function.
- You can access the Reset to default setting? function directly by activating the system control using the rotary knob or one of the selection buttons and then pressing and holding both selection buttons at the same time for at least 10 seconds.

7.2 Service information

7.2.1 Entering contact details

Menu \rightarrow Installer level \rightarrow Service information \rightarrow Enter contact details

- You can enter your contact details (Installer and Phone number) in the system control.
- As soon as the date of the next maintenance appointment is reached, the end user can view the data in the display.

7.2.2 Entering the service date

Menu \rightarrow Installer level \rightarrow Service information \rightarrow Service date

 In the system control, you can save a date (day, month, year) for the next regular maintenance service.

When the date for a service appointment is reached, a maintenance message is displayed in the basic display.

7.3 System

7.3.1 Reading the fault status

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Fault status

- This function allows you to read the status of the heating installation. If there is no fault present, the **No fault** message appears. If a there is a fault, then **Fault list** appears as a status. If you press the right-hand selection button, the fault messages (→ Page 22) will be displayed.

7.3.2 Reading the water pressure of the heating installation

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Water pressure

 You can use this function to read the water pressure of the heating installation.

7.3.3 Reading the system status

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow System status

 You can use this function to read the heating installation's operating mode.

Standby: The heating installation does not report any heat demand.

Heat. mode: The heating installation is in heating mode for the heating circuits.

Cooling: The heating installation is in cooling mode.

DHW: The heating installation is in heating mode for the domestic hot water in the cylinder.

7.3.4 Setting the frost protection delay

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Frost protect. delay

 You can use this function to delay activation of the frost protection function by setting a delay time.

7.3.5 Setting the temperature threshold for constant heating

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow OT constant heating

 If the outdoor temperature is lower than or equal to the defined temperature value, the system control regulates the heating circuit with the set day temperature and heating curve, even outside of the time period.

AT ≤ set temperature value: No night set-back or total shutdown

7.3.6 Reading the software version

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Control modules

- You can use this function to read the software versions of the display, the heat generator and the wiring centres.

7.3.7 Activating the adaptive heating curve

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Adaptive heat. curve

 You can use this function to activate an automatic heating curve. If you have activated this function using **Yes**, the system control automatically adjusts the heat curve. The automatic adjustment of the heating curve is performed in small steps. Use the **Heating curve** function to adapt the heating curve to the building so that the **Adaptive heat. curve** function has to carry out the fine adjustment.

The prerequisite for this is:

- The system control is installed in the living room.
- Any remote control unit that is present is installed in the living room
- In the **Zone assignment** function, the system control or, if required, the remote control unit is assigned to the correct zone.
- The **Thermost.** or **Temp. mod.** value is selected for the **Room temp. mod.** function.

7.3.8 Configuring the heating circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Configure heat. circ.

 You can use this function to define the zones on which you want the settings for the operating mode and desired temperature from the operator level to take effect.

Example: Two zones are connected and you set **ZONE1**. For both zones, use the left-hand selection button **Menu** \rightarrow **Basic** settings \rightarrow **Operating mode** to activate the Heating \rightarrow Auto operating mode. If the operator now uses the right-hand selection button **Op. mode** to change the operating mode to **Day**, the operating mode is changed only for **ZONE1**. The Auto operating mode remains in place for **ZONE2**.

7.3.9 Activating automatic cooling

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Automatic cooling

 Use this function to activate or deactivate automatic cooling.

If a heat pump is connected and the **Automatic cooling** function has been activated, the system control automatically switches between heating mode and cooling mode.

7.3.10 Setting the cooling start temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Start OT cooling

 You can use this function to set the temperature threshold from which cooling starts. If the outdoor temperature is greater than the temperature threshold set, the system control ends cooling mode.

Activating **Cooling possible** (\rightarrow Page 16)

7.3.11 Activating Source regeneration

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Source regeneration

If the Automatic cooling function is activated, you can use the Source regeneration function.

When the **Days away from home scheduling** function is activated, the system control switches the heating and cooling off. If you also activate the **Source regeneration** function, the system control switches the cooling back on and ensures that the heat from the living room is returned to the ground via the heat pump.

7.3.12 Read current room air humidity

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Current room air hum.

 You can use this function to read the current room air humidity. The room air humidity sensor is installed in the system control.

The function is activated only if the system control is installed in the living room.

7.3.13 Reading the current dew point

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Current dew point

- You can use this function to read the current dew point.

The current dew point is calculated from the current room temperature and room air humidity. The system control obtains the values for calculating the current dew point from the room temperature sensor and room air humidity sensor.

To do this, the system control must be installed in the living room and assigned to a zone. The thermostat function must be activated.

7.3.14 Defining the hybrid manager

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Hybrid manager

 You can use this function to determine the hybrid manager with which the heating installation should be controlled.

The hybrid heat pump always works with the **triVAI** function, meaning that the **Hybrid manager** function does not appear in the display.

triVAI: The price-oriented hybrid manager picks the heat generator on the basis of the tariffs set in relation to the heat demand.

Biv. point: The bivalence point hybrid manager picks the heat generator on the basis of the outdoor temperature.

7.3.15 Setting the heating bivalence point

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Heat. bivalence point

 If the bivalence point is selected for the Hybrid manager function, you can then use the Heat. bivalence point function.

When outdoor temperatures are low, a back-up boiler helps the heat pump to fulfil the heat demand. You can use this function to set the outdoor temperature above which the back-up boiler remains switched off.

7.3.16 Setting the domestic hot water bivalence point

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow DHW bivalence point

 When outdoor temperatures are low, a back-up boiler helps the heat pump to fulfil the heat demand for domestic hot water generation. You can use this function to set the outdoor temperature below which the back-up boiler is enabled.

Irrespective of the affected setting, the back-up boiler for the anti-legionella function is activated.

7.3.17 Setting the alternative point

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Alternative point

 If the bivalence point is selected for the Hybrid manager function, you can then use the Alternative point function.

The function represents the alternative point. When the outdoor temperature lies below the set temperature value, the system control always switches the heat pump off and the back-up boiler fulfils the heat demand in heating mode.

7.3.18 Setting the temperature when the heat pump fails

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow T. emergency mode

 If a heat pump is connected, you can use the **T. emer**gency mode function.

If the heat pump fails, the back-up boiler fulfils the heat demand. To avoid higher heating costs due to the back-up boiler, set a low flow temperature.

The end user notices a heat loss and recognises that there is a problem with the heat pump. In addition, the message **Restricted operation/ comfort protection** appears in the display. If the end user releases the back-up boiler to fulfil the heat demand, the system control overrides the set temperature for limp home mode.

You cannot use this function with the hybrid heat pump and it therefore does not appear in the selection list.

7.3.19 Defining the boiler type

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Auxiliary heater type

 If the triVAI entry is selected for the Hybrid manager function, you can then use the Auxiliary heater type function.

This function allows you to select the type of heat generator that is installed in the heating installation in addition to the heat pump.

To ensure that the heat pump and additional heat generator can work effectively and in coordination, you must select the applicable heat generator. If the heat generator setting is incorrect, this may lead to increased costs for the end user.

7.3.20 Deactivating units at the request of the energy supply company

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Energy supplier

 The energy supply company can use this function to send a deactivation signal.

The deactivation signal relates to the heat pump, the backup boiler and the heating installation's heating and cooling functions. You can specify which units and functions are deactivated by the system control. The units and functions specified are deactivated until the energy supply company cancels the deactivation signal.

The heat generator ignores the deactivation signal as soon as the heat generator is in frost protection mode.

7.3.21 Selecting the type of back-up boiler support – If the heating installation contains a cascade, you can

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] -> Auxiliary heater for

- You can use this function to specify whether the backup boiler should support the heat pump for domestic hot water, heating or not at all.
- **DHW**: The back-up boiler supports the heat pump during domestic hot water generation. The back-up boiler is activated for frost protection or deicing the heat pump.
- Heating: The back-up boiler supports the heat pump during heating.

The back-up boiler is activated for the anti-legionella function.

- DHW+heat .: The back-up boiler supports the heat pump during domestic hot water generation and heating.
- Inactive: The back-up boiler does not support the heat pump.

The back-up boiler is activated for the anti-legionella function, frost protection or de-icing.

If the back-up boiler is inactive, the heating installation cannot guarantee comfort.

You cannot use this function with the hybrid heat pump and it therefore does not appear in the selection list.

7.3.22 Setting the times for noise reduction mode

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] → Noise reduction operation

You can use this function to reduce the fan speed and therefore lower the noise level of the fan. The lower speed reduces the heating output.

The following effects are possible:

- The flat no longer heats up.
- The water in the domestic hot water cylinder no longer heats up.
- The back-up boiler takes on the task of supplying energy to the heating installation.

7.3.23 Reading the system flow temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] → System flow temp.

You can use this function to read the current temperature of the low loss header, for example.

7.3.24 Setting the offset for the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] → Buff. cyl. offs.

If a heat pump is connected, you can use this function to set an offset value (K) for the buffer cylinder for the heating circuit.

The buffer cylinder is charged to the flow temperature + the set offset value when the PV entry is activated for the Multifunct. Input function.

7.3.25 Activating the actuation sequence for the cascade

Menu → Installer level → System configuration → [System ---] → Actuation reversal

- use the Actuation reversal function.
- Off: The system control always actuates the heat generators in the sequence 1, 2, 3, etc.
- On: This function is used to ensure that the heat generators are used evenly. Once a day, the system control sorts the heat generators based on their actuation time. The back-up heater is excluded from this sorting.

7.3.26 Reading the actuation sequence for the cascade

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] → Actuation sequence

- You can use this function to read the sequence in which the system control actuates the heat generators. The back-up heater is not affected by this actuation sequence and is therefore not listed.

7.4 Basic system diagram configuration

7.4.1 Defining the basic system diagram

Menu → Installer level → System configuration [System diagram configuration ----] → System diagram

You use this function to define the basic system diagram in the system control.

The basic diagram book contains examples of the basic system diagrams that are supported by the system control. If you have found a suitable basic system diagram, enter the number of the basic system diagram into the function.

7.4.2 Configuring the inputs and outputs of the **VR 71**

Menu → Installer level → System configuration [System diagram configuration ----] → Config.: VR71

You can use this function to configure which inputs and outputs you can use and which functions the inputs and outputs have.

Each configuration has a unique setting value, which you need to enter in the Config.: VR71 function. You can find the set value and the terminal assignment for the selected basic system diagram in the basic diagram book.

Connecting the sensors to VR 71 (\rightarrow Page 33)

Connecting the actuators to VR 71 (\rightarrow Page 33)

7.4.3 Configuring the inputs and outputs of the **VR 70**

Menu → Installer level → System configuration [System diagram configuration ----] → Config.: VR70 addr. 1

You can use this function to configure which inputs and outputs you can use and which functions the inputs and outputs have.

Each configuration has a unique set value, which you need to enter in the Config.: VR70 addr. 1 function. You can find the set value and the terminal assignment for the selected basic system diagram in the basic diagram book.

Connecting the actuators and sensors to VR 70 (\rightarrow Page 33)

7.4.4 Configuring the VR 70's multi-function output

Menu \rightarrow Installer level \rightarrow System configuration [System diagram configuration ----] \rightarrow MA VR70, addr. 1

 You can use this function to set which functions are to be assigned to the multi-function output.

Connecting the actuators and sensors to VR 70 (\rightarrow Page 33)

If you have set configuration 3 (**Config.: VR70 addr. 1**) for the **VR 70**, you cannot set **Charg.pump** or **Leg. pump**.

The **MA VR70**, addr. 1 function does not appear on the display if the functions of the multi-function output have been defined by the system configuration.

7.4.5 Configuring the VR 71's multi-function output

Menu \rightarrow Installer level \rightarrow System configuration [System diagram configuration ----] \rightarrow MA VR71

 You can use this function to set which functions are to be assigned to the multi-function output.

Connecting the sensors to VR 71 (\rightarrow Page 33)

Connecting the actuators to VR 71 (→ Page 33)

If you have set configuration 3 (**Config.: VR71**) for the **VR 71**, you cannot set **TD con.**. For configuration 6, you cannot set **Charg.pump**, **Leg. pump** or **TD con.**.

The **MA VR71** function does not appear in the display if the functions of the multi-function output have been set by the system configuration.

7.5 Additional module

7.5.1 Configuring the multi-function output

 $Menu \rightarrow Installer \ level \rightarrow System \ configuration \ [Additional module ----] \rightarrow Multi-funct. \ output \ 2$

 You can use the multi-function output 2 to control the circulation pump, dehumidifier or anti-legionella pump.

Depending on the system diagram specified, multi-function output 2 is specified with a single function, or you can set a function from a selection of two or three.

7.5.2 Setting the auxiliary heater output

Menu \rightarrow Installer level \rightarrow System configuration [Additional module ----] \rightarrow Aux. heater output

 If you have connected an aroTHERM, you can use this function Aux. heater output. You can use this function to set the level (max. output) at which the auxiliary heater should work when heat is required.

You can operate the auxiliary heater at three different levels (outputs).

7.5.3 Configuring the multi-function input

Menu \rightarrow Installer level \rightarrow System configuration [Additional module ----] \rightarrow Multi-funct. Input

- If a heat pump is connected, you can use the Multifunct. Input function. The system control requests the heat pump's input for this purpose.
- **aroTHERM** input: ME of the VWZ-AI additional module
- flexoTHERM input: X41, terminal in the functional drawing

If there is a signal at the input of the heat pump, the following functionalities are possible.

Not conn.: The system control does not activate any functions. The system control ignores the signal present.

Circ. boost: The end user has pressed the circulation button. The system control activates the circulation pump for a short time period.

PV: The connected photovoltaic installation generates surplus current, which is intended to be used for the heating installation. The system control activates the **Cylinder boost** function once. If the signal remains at the input, the system control activates the charging of the buffer cylinder in the heating circuit. This means that the buffer cylinder is charged to the flow temperature and Setting the offset for the buffer cylinder (\rightarrow Page 12) until the signal at the input of the heat pump falls away again.

7.6 Heat generator 1, heat pump 1, additional module

7.6.1 Reading the status

Menu \rightarrow Installer level \rightarrow System configuration [Heat generator 1 ----] \rightarrow Status

Menu \rightarrow Installer level \rightarrow System configuration [Heat pump 1 ----] \rightarrow Status

Menu \rightarrow Installer level \rightarrow System configuration [Additional module ----] \rightarrow Status

 You can use this function to read which heat demand the system control reports to the heat generator, the heat pump or the additional module for the heat pump.

Standby: The system control does not report any heat demand.

Heat. mode: The system control reports a heat demand for the heating mode.

Cooling: The system control reports a heat demand for the cooling mode.

DHW: The system control reports a heat demand for domestic hot water generation.

7.6.2 Reading the current flow temperature

Menu \rightarrow Installer level \rightarrow System configuration [Heat generator 1 ----] \rightarrow Current flow temp.

Menu \rightarrow Installer level \rightarrow System configuration [Heat generator 1 ----] \rightarrow Current flow temp.

Menu \rightarrow Installer level \rightarrow System configuration [Additional module ----] \rightarrow Current flow temp.

 You can use this function to read the current actual flow temperature of the heat generator, the heat pump or the heat pump's additional module.

7.7 HEATING 1

You can use the heating circuit for various functions (heating circuit, pool circuit, fixed value circuit, etc.). The display only shows the functions that you require when using the heating circuit. You can use the overview to see which functions you can set or read for your configuration.

Functions for the heating circuit (\rightarrow Page 31)

7.7.1 Setting Type of circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Type of circuit

 You can use this function to define the functions that the heating circuit is to have.

The first heating circuit in the heating installation has the default setting **Heating**. All other heating circuits have the default setting **Inactive**, which you may have to activate.

Inactive: The heating circuit is not being used.

Heating: The heating circuit is being used to heat and is weather-compensated. Depending on the basic system diagram, the heating circuit may be a mixing circuit or a direct circuit.

Pool: The heating circuit is being used as a pool circuit. You can connect the external pool controller to the DEM1 to DEMx input on the **VR 70** or **VR 71**. If the terminals at the input have short-circuited, there is no heat demand. If the terminals at the input are open, there is a heat demand.

Fixed val.: The heating circuit is maintained at two fixed target flow temperatures. The heating circuit can be switched between two target flow temperatures.

Ret.fl.incr.: The heating circuit is used for the increase in return flow. The increase in return flow is used to protect against corrosion in the floor-standing boiler as a result of falling below the dew point for an extended period.

DHW: The heating circuit is being used as a hot water circuit for an additional cylinder.

Depending on the **Type of circuit** that is selected, only the required functions appear in the display.

7.7.2 Reading the status of the heating circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Status

 You can use this function to read which operating mode the heating circuit is in.

off: The heating circuit does not report any heat demand.

Heat. mode: The heating circuit is in heating mode.

Cooling: The heating circuit is in cooling mode.

DHW: The heating circuit is in heating mode for the domestic hot water in the cylinder.

7.7.3 Reading the heating circuit's target flow temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Target flow temp.

 You can use this function to read the target flow temperature for the heating circuit.

7.7.4 Reading the target flow temperature of the pool circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Target flow temp. pool

 You can use this function to read the target flow temperature of the pool circuit.

7.7.5 Setting the day target flow temperature for the pool circuit or fixed value circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Target flow temp.: Day

You can use this function to set the target flow temperature for the pool circuit and/or the fixed value circuit within the time period (day).

7.7.6 Setting the set-back target flow temperature for the pool circuit or fixed value circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow T.fl.temp.: Set-back

 You can use this function to set the target flow temperature for the pool circuit or fixed value circuit outside of the time period (night).

7.7.7 Setting the target return temperature for the "increase in return flow" circuit type

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Target return temp.

 You can use this function to set the target return temperature for the "increase in return flow" circuit type.

7.7.8 Setting the minimum cooling target flow value

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Min. cool. fl. tgt temp.

 If a heat pump is connected and the Cooling possible function is activated for the heating circuit, you can set the minimum target flow value for the Cooling possible mode.

The system control regulates the heating circuit at the minimum cooling target flow value, even if the end user has set a lower desired temperature for cooling.

7.7.9 Reading the actual temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Current temperature

 You can use this function to read the actual temperature of the heating circuit.

7.7.10 Setting the excess temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Excessive temp.

 You can use this function to set the excess temperature. The excess temperature increases the current set target temperature of the heating circuit by the value that is set.

On mixer circuits with fixed mixing, this function means that the set target temperature can be reached in pre-heat mode, even though the temperature of the mixer circuit drops substantially. The function also allows for an optimal control range for operating the mixer valve. Stable operation is only possible if the mixer valve only rarely has to move to the limit stop. This ensures improved quality of control.

7.7.11 Setting the temperature threshold for deactivating the heating circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Max limit outs.temp.

 You can use this function to set the temperature threshold. If the outdoor temperature is greater than the switch-off threshold set, the system control deactivates heating mode.

7.7.12 Setting the minimum flow temperature for the heating circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Minimum temperature

 You can use this function to specify a minimum value for the flow temperature in heating mode for each heating circuit; the control system will not fall below this value. The system control compares the calculated flow temperature with the value set for the minimum temperature and, if there is a difference, adjusts this to the higher value.

7.7.13 Setting the maximum flow temperature for the heating circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Maximum temperature

You can use this function to specify a maximum value for the flow temperature in heating mode for each heating circuit; the control system will not exceed this value. The system control compares the calculated flow temperature with the value set for the maximum temperature and, if there is a difference, adjusts to the lower value.

7.7.14 Specifying control behaviour outside time periods

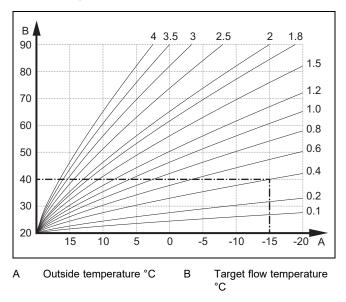
Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Auto Off mode

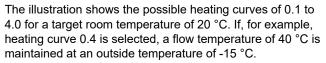
This function enables you to specify, for each heating circuit separately, the system control functions in automatic mode outside active time periods. Default setting: Eco

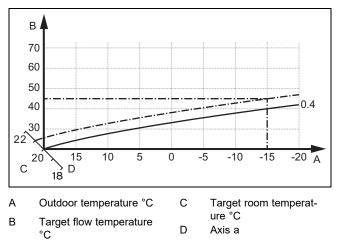
You can select from two control behaviours, which you can adapt further by using room temperature modulation.

If you have set the **Thermost**. value in the **Room temp**. **mod**. function, the **Auto Off mode** function is ineffective. The system control always brings the target room temperature to $5 \,^{\circ}$ C.

Eco: The operating mode Auto Off mode, Auto (outside of the time period) and off are switched off. If a mixing circuit is connected, the heating pump is switched off and the heating circuit mixer is closed. The outdoor temperature is monitored. If the outdoor temperature falls below 4 °C, the system control switches the heating function on after the end of the frost protection delay time. The heating pump is activated. If a mixing circuit is connected, the heating pump and the heating circuit mixer are activated. The system control regulates the target room temperature at the set temperature Set-back. Despite the heating function being switched on, the heat generator is only active on demand. The heating function remains active until the outdoor temperature rises above 4 °C, after which the system control switches the heating function off again, but the outdoor temperature monitoring remains active.


 Set-back: The heating function is switched on and the target room temperature is maintained at the set Setback temperature.


7.7.15 Setting the heating curve


Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Heating curve

 If the heating curve setting is not sufficient to control the living room climate according to the operator's wishes, you can adapt the heating curve setting made during installation.

If you activate the **Adaptive heat. curve** function, you must always adjust the value for the heating curve to the heating surface design.

If the heating curve 0.4 is selected and 21 °C is specified for the target room temperature, the heating curve is then translated, as shown in the figure. The heating curve is displaced according to the value of the room target temperature along axis a which is angled at 45°. At an outside temperature of -15 °C, the control system provides a flow temperature of 45 °C.

7.7.16 Activating Room temp. mod.

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Room temp. mod.

 This function allows you to define whether the temperature sensor integrated in the system control or in the remote control unit should also be used.

The prerequisite for this is:

- The system control is installed in the living room.
- Any remote control unit that is present is installed in the living room.
- In the Zone assignment function, the system control or the remote control unit is assigned to the zone in which the system control or remote control unit is installed. If you do not assign any zones, the Room temp. mod. function is ineffective.

None: The temperature sensor is not used for control.

Temp. mod.: The built-in temperature sensor measures the current room temperature in the reference room. This value is compared with the target room temperature and, if there is a difference, results in adjustment of the flow temperature by means of the so-called "Effective target room temperature". Effective room temp. target = set room temp. target + (set room temp. target - measured room temp. target). The effective target room temperature is then used for controlling instead of the set target room temperature.

Thermost.: This function works in the same way as the **Temp. mod.** function, however the zone is also switched off when the measured room temperature is + 3/16 K greater than the set target room temperature. When the room temperature falls + 2/16 K back below the target room temperature set, the zone is switched on again. The use of room temperature modulation, in combination with careful selection of the heating curve, leads to optimum control of the heating installation.

7.7.17 Activating Cooling possible

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Cooling possible

When a heat pump is connected, you can activate the Cooling function for the heating circuit.

7.7.18 Activating the dew point monitoring

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Dew point monitoring

 You can use this function to activate the dew point monitoring.

If the dew point monitoring has been activated, the system control compares the set minimum cooling target flow value with the dew point+offset. The system control always selects the higher temperature so that no condensate can form.

7.7.19 Setting the end cooling temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow End OT cooling

 You can use this function to set the temperature threshold from which cooling switches off. If the outdoor temperature is lower than the temperature threshold set, the system control ends cooling mode.

7.7.20 Setting the dew point offset

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Offset dew point

- You can use this function to set the dew point offset.

The offset is a safety margin that is added to the dew point. The system control selects the maximum for the flow temperature calculated from the flow temperature that is set and the dew point + offset.

7.7.21 Reading the status of the external heat demand

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Status ext. heat dem.

You can use this function to read the heat demand on an external input.

Depending on the configuration of the **VR 70** or **VR 71**, there is one external input for each heating circuit. You can connect an external zone controller, for example, to this external input.

7.7.22 Reading the heating pump status

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING1 ----] \rightarrow Pump status

You can use this function to read the current status (On, off) of the heating pump for the heating circuit.

7.7.23 Reading the status of the heating circuit mixer

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [HEAT-ING2 ----] \rightarrow Mixer status

 You can use this function to read the current status (Opening, Closing, Stationary) of the heating circuit mixer from HEATING2.

7.8 ZONE1

7.8.1 Deactivating the zone

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Zone activated

You can use this function to deactivate the zone that you do not require.

All available zones appear on the display if the existing heating circuits are activated in the **Type of circuit** function.

Setting the type of circuit (\rightarrow Page 14)

7.8.2 Setting the day temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Day temperature

- You can use this function to set the required temperature within the time period for the zone.

7.8.3 Setting the set-back temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Set-back temp.

- You can use this function to set the required temperature outside of the time period for the zone.

The night temperature is the temperature to which the heating is to be reduced at times of low heat demand.

7.8.4 Reading the room temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Room temperature

 You can use this function to read the current room temperature. To do this, the system control must be installed in the living room and assigned to a zone.

The system control has an integrated temperature sensor, which determines the room temperature.

7.8.5 Assigning a zone

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Zone assignment

 You can use this function to assign the unit (system control or remote control) that is installed in the zone to the selected zone. The control system also uses the room temperature sensor for the assigned unit.

If you have assigned a remote control unit, the remote control unit uses all of the values for the assigned zone.

If you do not assign any zones, the **Room temp. mod.** function is ineffective.

7.8.6 Reading the zone valve status

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [ZONE1 ----] \rightarrow Zone valve status

You can use this function to read the current status of the zone valve (Open, Closed).

7.9 DHW circuit

7.9.1 Setting the cylinder

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Cylinder

 You can use this function to activate or deactivate a cylinder for the hot water circuit.

If a cylinder is installed in the heating installation, the setting must always be active.

7.9.2 Reading the domestic hot water circuit's target flow temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [DHW circuit ----] \rightarrow Target flow temp.

 You can use this function to read the target flow temperature of the domestic hot water circuit.

7.9.3 Setting the target cylinder temperature (domestic hot water)

Risk of death from legionella.

Legionella multiply at temperatures below 60 °C.

Ensure that the end user is familiar with all of the Anti-legionella measures in order to comply with the applicable regulations regarding legionella prevention.

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Domestic hot water

Menu \rightarrow Installer level \rightarrow System configuration [HEAT-ING1 ----] \rightarrow Domestic hot water

 You can use this function to define the set target temperature (Domestic hot water) for a connected domestic hot water cylinder. Set the set target temperature on the system control in such a way that the heat demand of the end user is covered.

► Observe the applicable regulations regarding legionella prevention.

7.9.4 Reading the actual temperature of the domestic hot water cylinder

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Current cyl. temp.

Menu \rightarrow Installer level \rightarrow System configuration [HEAT-ING1 ----] \rightarrow Current cyl. temp.

You can use this function to read the measured cylinder temperature.

7.9.5 Reading the status of the cylinder charging pump

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Cyl. charging pump

Menu \rightarrow Installer level \rightarrow System configuration [HEAT-ING1 ----] \rightarrow Cyl. charging pump

 You can use this function to read the status of the cylinder charging pump (**On**, **off**).

7.9.6 Reading the status of the circulation pump

$Menu \rightarrow Installer \ level \rightarrow System \ configuration \ [DHW \ circuit \ ----] \rightarrow Circulation \ pump$

 You can use this function to read the status of the circulation pump (**On**, **off**).

7.9.7 Defining the day for the anti-legionella function

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Anti-legionella day

 You can use this function to define whether the anti-legionella function is carried out daily or on a specific day.

If the anti-legionella function is activated, the water in the domestic hot water circuit is automatically heated to the target cylinder temperature of 70 °C (with 5 K hysteresis) at the scheduled times. The circulation pump is activated.

The function is terminated automatically when the cylinder temperature sensor measures a temperature of > 60 °C for more than 60 minutes, or after a period of 120 minutes has elapsed, to avoid getting "stuck" in this function if water is drawn simultaneously.

Factory setting = **off** means there is no Anti-legionella function.

If the **Days away from home scheduling** function is active, no anti-legionella function is carried out during these days.

The anti-legionella function is reactivated directly on the first day after the **Days away from home scheduling** function has expired and is carried out at the scheduled times.

If a heat pump is installed in the heating installation, the system control activates the back-up boiler for the anti-legionella function.

Danger!

7.9.8 Defining the time for the anti-legionella function

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Anti-legionella time

 You can use this function to define the time for executing the Anti-legionella function.

When the time is reached on the defined day, the function starts automatically.

If the **Days away from home scheduling** function is active at the same time, the anti-legionella function is not carried out.

7.9.9 Setting the hysteresis for cylinder charging

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Cyl. boost hysteresis

 If a heat pump is connected, you can use this function to set a hysteresis for the cylinder charging.

For example: If the desired temperature is set to 55 $^{\circ}$ C and the temperature difference for cylinder charging is set to 10 K, cylinder charging begins as soon as the cylinder temperature drops to 45 $^{\circ}$ C.

7.9.10 Defining the offset for charging the domestic hot water cylinder

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Cylinder boost offset

 If a heat pump is connected, you can use this function to specify an offset value (K) for the set hot water temperature. The domestic hot water cylinder is then charged to the flow temperature, which equates to the total of the set hot water temperature and this offset value.

7.9.11 Setting the maximum cylinder charging time

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Max. cyl. charg. time

 If a heat pump is connected, you can use this function to set the maximum charge time for which the cylinder is charged without interruption.

The **off** setting means that there is no time limit for the cylinder charging time.

7.9.12 Setting the anti-cycling time for the hot water demand

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow DHW req. anti-cy time

 If a heat pump is connected, you can use this function to set a time period in which cylinder charging is blocked.

If the maximum cylinder charging time is reached but the domestic hot water cylinder connected has not yet reached its set target temperature, the **DHW req. anti-cy time** function takes effect.

7.9.13 Defining the overrun time for the cylinder charging pump

Menu \rightarrow Installer level \rightarrow System configuration [DHW circuit ----] \rightarrow Ch. pump overrun time

 You can use this function to define an overrun time for the cylinder charging pump. The high flow temperature required for cylinder charging continues to be delivered to the cylinder as far as possible by means of the charge pump overrun before the heating circuits (in particular, the burner circuit) are enabled again for the heating function.

When the set domestic hot water temperature (cylinder charging) is reached, the system control switches off the heat generator. The overrun time for the cylinder charging pump starts. The system control automatically deactivates the cylinder charging pump after the overrun time has elapsed.

7.9.14 Activating parallel cylinder charging (domestic hot water cylinder and mixing circuit)

$\begin{array}{l} Menu \rightarrow Installer \ level \rightarrow System \ configuration \ [DHW \ circuit \ ----] \rightarrow Parallel \ cyl. \ charging \end{array}$

 You can use this function to define, for the connected mixing circuit, that the mixing circuit should continue to be heated during charging of the domestic hot water cylinder.

If the **Parallel cyl. charging** function is activated, the mixing circuits continue to be supplied while the cylinder is being charged. Provided there is a heat demand in the mixing circuit, the system control does not deactivate the heating pump in the mixing circuit. The non-mixed heating circuit is always switched off during cylinder charging.

7.10 Buffer cylinder

7.10.1 Reading the top cylinder temperature in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow Cyl. temp.: top

- You can use this function to read the actual temperature in the upper section of the buffer cylinder.

7.10.2 Reading the bottom cylinder temperature in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow Cyl. temp.: Bottom

- You can use this function to read the actual temperature in the lower section of the buffer cylinder.

7.10.3 Reading the top cylinder temperature for domestic hot water in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow DHW temp. sensor, top

 You can use this function to read the actual temperature in the upper section of the buffer cylinder's hot water component.

7.10.4 Reading the bottom cylinder temperature for domestic hot water in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow DHW tmp. sensor, bot.

 You can use this function to read the actual temperature in the lower section of the buffer cylinder's hot water component.

7.10.5 Reading the top cylinder temperature for heating in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow Heat. temp. sens., top

 You can use this function to read the actual temperature in the upper section of the buffer cylinder's heating component.

7.10.6 Reading the bottom cylinder temperature for heating in the buffer cylinder

Menu \rightarrow Installer level \rightarrow System configuration [Buffer cylinder ----] \rightarrow Heat. temp. sens., bot.

 You can use this function to read the current temperature in the lower section of the buffer cylinder's heating component.

7.10.7 Setting the max. target flow temperature in the buffer cylinder

$\label{eq:menu} \begin{array}{l} \mbox{Menu} \rightarrow \mbox{Installer level} \rightarrow \mbox{System configuration} \ [Buffer cylinder ----] \rightarrow \mbox{Max.DHW fl.targ.temp.} \end{array}$

You can use this function to set the buffer cylinder's maximum target flow temperature for the domestic hot water station. The max. target flow temperature that is to be set must be lower than the max. flow temperature for the heat generator. While the cylinder's set target temperature is not reached, the system control does not allow the heat generator to go into heating mode.

You can find the maximum target flow temperature that the heat generator can achieve in the installation instructions for the heat generator.

If the max. target flow temperature that is set is too low, the domestic hot water station cannot provide the required target temperature for the cylinder.

7.11 Solar circuit

7.11.1 Reading the collector temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Collector temp.

 You can use this function to read the current temperature on the collector temperature sensor.

7.11.2 Reading the status of the solar pump

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar pump status

 You can use this function to read the current status of the solar pump (**On**, **off**).

7.11.3 Reading the running time of the solar pump

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar pump runtime

 You can use this function to read the measured operating hours of the solar pump since start-up or since the last reset.

7.11.4 Resetting the solar pump running time

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Reset runtime

 You can use this function to reset the total operating hours of the solar pump to zero.

7.11.5 Reading the value of the solar yield sensor

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar yield sensor

 You can use this function to read the current value for the solar yield sensor.

7.11.6 Setting the flow rate of the solar circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar flow volume

In this function, enter the value for the volume flow. This value is used to calculate the solar yield.

If a **VMS 70** is installed in the heating installation, the **VMS 70** supplies the value for the volume flow. The system control ignores the value that is entered in this function.

7.11.7 Activating Solar pump boost

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar pump boost

 This function allows you to activate a pump kick for the solar pump, in order to speed up the temperature recording of the collector temperature.

Depending on the design, there is a time delay in some collectors during calculation of the measured value for temperature recording. You can use the **Solar pump boost** function to reduce the time delay. When this function is activated, the solar pump is switched on for 15 seconds (solar pump boost) if the temperature at the collector temperature sensor has risen by 2 K/hour. This transports the heated solar fluid to the point of measurement more quickly.

7.11.8 Setting the solar circuit protection

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Solar circuit prot.

 With this function, you can define a temperature threshold for the calculated collector temperature in the solar circuit.

If the available solar heat exceeds the current heat requirement (e.g. all cylinders fully charged), the temperature in the collector field may rise steeply. If the protection temperature set at the collector temperature sensor is exceeded, the solar pump is switched off to protect the solar circuit (pump, valves, etc.) against overheating. The solar pump is switched back on once the system has cooled down (35 K hysteresis).

7.11.9 Setting the minimum collector temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Min. collector temp

You can use this function to set the minimum collector temperature.

Defining the switch-on differential for solar charging $(\rightarrow Page 20)$

7.11.10 Setting the purging time for the solar circuit

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] \rightarrow Purging time

You can use this function to support the purging of the solar circuit.

The system control stops the function once the specified purging time has elapsed, the solar circuit protection function is active or the max. cylinder temperature has been exceeded.

7.11.11 Reading the current flow rate for the VMS 70 7.13 2nd differential temperature control

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar circuit ----] → Current flow rate

You can use this function to read the measured flow rate (volume flow) for the VMS 70.

7.12 Solar cylinder 1

7.12.1 Defining the switch-on differential for solar charging

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar cylinder 1 ----] → Switch-on diff.

This function allows you to define a differential value for starting solar charging. The temperature difference is measured between the lower cylinder temperature sensor and the collector temperature sensor.

If the temperature difference exceeds the differential value set and the minimum collector temperature set, the system control switches the solar pump on. The solar cylinder is charging. The differential value can be defined separately for two connected solar cylinders.

7.12.2 Defining the switch-off differential for solar charging

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar cylinder 1 ----] → Switch-off diff.

This function allows you to define a differential value for stopping solar charging. The temperature difference is measured between the lower cylinder temperature sensor and the collector temperature sensor.

If the temperature difference falls below the differential value that is set, the system control switches the solar pump off. The solar cylinder is no longer charged. The switch-off differential temperature value must be at least 1 K less than the set switch-on differential temperature value.

7.12.3 Defining the maximum temperature for solar cylinder

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar cylinder 1 ----] → Maximum temperature

This function allows you to define a maximum value as a limit for the solar cylinder temperature, in order to guarantee the highest possible yield from the solar cylinder heating, but also to ensure protection against calcification.

If the maximum temperature set on the bottom cylinder temperature sensor is exceeded, the system control switches the solar pump off. Solar charging is only enabled again once the temperature at the bottom cylinder temperature sensor has fallen by between 1.5 K and 9 K, depending on the maximum temperature. The maximum temperature set must not exceed the maximum permissible cylinder temperature of the cylinder that is used.

7.12.4 Reading the value for the bottom cylinder temperature sensor

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Solar cylinder 1 ----] → Cyl. temp.: Bottom

You can use this function to read the current measured value for the bottom cylinder temperature sensor.

7.13.1 Defining the switch-on differential for the second differential temperature control

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → Switch-on diff.

You can use this function to define a differential value for starting the differential temperature control, such as solar supported heating.

If the difference between differential temperature sensor 1 and differential temperature sensor 2 exceeds the specified switch-on differential and the minimum temperature at differential temperature sensor 1, the system control then controls the differential temperature output. The differential temperature control starts.

7.13.2 Defining the switch-off differential for the second differential temperature control

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → Switch-off diff.

You can use this function to define a differential value for stopping the differential temperature control, such as solar supported heating.

If the difference between differential temperature sensor 1 and differential temperature sensor 2 falls below the specified switch-off differential or exceeds the maximum temperature at differential temperature sensor 2, the system control then controls the differential temperature output. The differential temperature control stops.

7.13.3 Setting the minimum temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → Minimum temperature

You can use this function to set the minimum temperature in order to start the differential temperature control.

Defining the switch-on differential for the second differential temperature control (→ Page 20)

7.13.4 Setting the maximum temperature

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → Maximum temperature

_ You can use this function to set the maximum temperature in order to stop the differential temperature control.

Defining the switch-off differential for the second differential temperature control (\rightarrow Page 20)

7.13.5 Reading the value for differential temperature sensor 1

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → TD1 sensor

You can use this function to read the current measured value for differential temperature sensor 1 (TD1).

7.13.6 Reading the value for differential temperature sensor 2

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] → TD2 sensor

 You can use this function to read the current measured value for differential temperature sensor 2 (TD2).

7.13.7 Reading the status of the differential temperature control

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [2nd temperature difference control ----] \rightarrow TD output

You can use this function to read the status of the differential temperature control.

7.14 Ventilation

7.14.1 Reading the air quality sensor

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Ventilation ----] \rightarrow Air quality sensor 1/2

 You can use this function to read the measured values from the air quality sensor.

7.14.2 Setting the maximum value for air quality sensor

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [Ventilation ----] \rightarrow Max. air qual. sensor

You can use this function to set a maximum value for the air quality.

If the air quality exceeds the maximum value specified, the system control activates the **recoVAIR.../4** ventilation unit accordingly. You will find a detailed functional description in the **recoVAIR.../4** manual.

7.15 Selecting the wiring centre for sensor/actuator test

$\begin{array}{l} \textbf{Menu} \rightarrow \textbf{Installer level} \rightarrow \textbf{Sensor/actuator test} \rightarrow [\text{Select Unit}] \end{array}$

- This function allows you to select a connected wiring centre for the sensor and actuator test. The system control lists the actuators and sensors for the selected wiring centre. If you confirm the selection of an actuator using **OK**, the system control activates the relay. The actuator's function can now be checked. Only the activated actuator is active, all other actuators are "deactivated" at this time.

For example, you can move a mixing valve in the "Open" direction and check that it is connected the right way round or activate a pump and check that it starts up. If you select a sensor, the system control shows the measured value of the selected sensor. For the selected component, read the measured values from the sensors and check whether the individual sensors are providing the expected values (temperature, pressure, flow rate, etc.).

7.16 Activating the screed-drying function

i

Note

All heat pumps except for the hybrid heat pump are used for screed drying.

Menu \rightarrow Installer level \rightarrow Screed-drying function \rightarrow HEAT-ING1

 You can use this function to "dry heat" freshly laid screed in accordance with the construction regulations, according to a defined time and temperature schedule.

When screed drying is activated, all the selected operating modes are interrupted. The system control controls the flow

temperature of the controlled heating circuit according to a pre-set program, regardless of the outdoor temperature.

Days after starting the func- tion	Target flow temperature for this day [°C]
1	25
2	30
3	35
4	40
5	45
6–12	45
13	40
14	35
15	30
16	25
17–23	10 (frost protection function, pump in operation)
24	30
25	35
26	40
27	45
28	35
29	25

The display shows the current day and the target flow temperature. You can manually set the current day.

The day is always changed at 00:00, irrespective of when the function starts.

After a mains Off/On, screed drying starts with the last active day.

The function ends automatically when the last day of the temperature profile has elapsed (day = 29) or if you set the start day to 0 (day = 0).

7.17 Changing the code for Installer level

$Menu \rightarrow Installer \ level \rightarrow Change \ code$

- You can use this function to change the access code for the **Installer level**.

If the code is no longer available, you must reset the system control to the factory setting in order to obtain access to Installer level again.

Resetting to factory setting (→ Page 9)

8 Handing over to the end user

8.1 Handing the product over to the end user

- Inform the operator of how to handle and operate their product.
- Provide the operator with all relevant instructions and unit documentation for safe-keeping.
- ▶ Tell the operator the article number of the product.
- Go through the operating instructions with the operator .
- Answer any questions the end user may have.
- In particular, draw the end user's attention to the safety information that they must follow.

Danger! Risk of death from legionella.

Legionella multiply at temperatures below 60 °C.

- Ensure that the end user is familiar with all of the Anti-legionella measures in order to comply with the applicable regulations regarding legionella prevention.
- ▶ Point out the anti-legionella function to the end user.
- Inform the end user that they must have the product maintained in accordance with the specified intervals.

9 Troubleshooting

9.1 Troubleshooting measures

If a fault occurs in the heating installation, $\langle D$ will appear in the display together with a fault message.

You can also read all current error messages under the following menu item:

Menu \rightarrow Installer level \rightarrow System configuration \rightarrow [System ----] \rightarrow Fault status

If a fault is present, the status Fault list is displayed.
 In this case, the right-hand selection button is for the Display function. You can press the right-hand selection button to display the list of fault messages.

Note

Not all fault messages in the list will appear automatically on the basic display.

Troubleshooting faults (→ Appendix D.1)

Troubleshooting errors (→ Appendix D.2)

9.2 Maintenance message

If maintenance is required, the system control displays a maintenance message in the display.

- Carry out the maintenance instructions in accordance with the operating or installation instructions for the unit shown.
- In the Service date function, set when the next maintenance is due (→ Page 9).

Overview of the maintenance messages

Maintenance messages (→ Appendix E)

10 Decommissioning

10.1 Decommissioning the heating installation

Decommission all system components of the heating installation, as described in the installation instructions for the individual system components.

10.1.1 Removing the product from the wall

- 1. Insert the screwdriver into the slot on the wall base.
- 2. Lever the product off the wall base.
- 3. Disconnect the eBUS line from the pin header on the product and from the terminal block on the heat generator.
- 4. Unscrew the wall-mounting base from the wall.

10.1.2 Removing the product from the heat generator

- 1. If required, open the front panel on the heat generator.
- 2. Carefully remove the product from the heat generator's electronics box.
- 3. Disconnect the 6-pin edge connector at slot X41 on the heat generator.
- 4. If required, close the front panel on the heat generator.

11 Recycling and disposal

Packaging

Dispose of the packaging correctly.

This product is an electrical or electronic unit within the context of EU Directive 2012/19/EU. The unit was developed and manufactured using high-quality materials and components. These can be recycled and reused.

Find out about the regulations that apply in your country regarding the separate collection of waste electrical or electronic equipment. Correctly disposing of old units protects the environment and people against potential negative effects.

- Dispose of the packaging correctly.
- Observe all relevant regulations.

Disposing of the product

X

If the product is labelled with this symbol:

- In this case, do not dispose of the product with the household waste.
- Instead, hand in the product to a collection centre for waste electrical or electronic equipment.

Disposing of batteries

If the product contains batteries that are labelled with this symbol:

- In this case, dispose of the batteries at a collection point for batteries.
 - Prerequisite: The batteries can be removed from the product without causing any destruction. Otherwise, the batteries are disposed of together with the product.

 In accordance with the legal regulations, the end user is obligated to return used batteries.

Deleting personal data

Personal data may be misused by unauthorised third parties.

If the product contains personal data:

 Ensure that there is no personal data on or in the product (e.g. online login details or similar) before you dispose of the product.

12 Customer service

For contact details for our customer service department, you can write to the address that is provided on the back page, or you can visit www.vaillant.co.uk.

13 Technical data

13.1 System control

Rated voltage	9 to 24 V
Rated surge voltage	330 V
Pollution degree	2
Rated current	< 50 mA
Supply line cross-section	0.75 to 1.5 mm ²
IP rating	IP 20
Protection class	111
Temperature for the ball pressure test	75 ℃
Maximum permitted environmental tem- perature	0 to 60 °C
Current room air humidity	20 to 95 %
Mode of operation	Туре 1
Height	115 mm
Width	147 mm
Depth	50 mm

Appendix

A Setting values for basic system diagram, VR 70 and VR 71

A.1 Gas-/oil-fired condensing boiler (eBUS)

Cylinder	Equipment	Heating cir- cuits	Set value for		
			Basic sys- tem dia- gram	VR 70	VR 71
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing boiler	1 direct	1		
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing boiler Low loss header for heating circuits only	1 direct 1 mixed	1	1	
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing boiler Low loss header for heating circuits only	2 mixed	1	5	
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing boiler Low loss header for heating circuits only	3 mixed	1		3
Monovalent domestic hot water cylinder or combi cylinder	Low loss header for heating circuits and domestic hot water cylinders	1 direct 1 mixed	2	1	
Monovalent domestic hot water cylinder or combi cylinder	Low loss header for heating circuits and domestic hot water cylinders	3 mixed	2		3

A.2 Gas-/oil-fired condensing unit (eBUS) and solar hot water support

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Bivalent domestic hot water cylin- der	Cylinder charging using a condensing unit and solar heat	1 direct	1	6	
Bivalent domestic hot water cylin- der	Cylinder charging using a condensing unit and solar heat	3 mixed	1		2

A.3 Gas-/oil-fired condensing unit (eBUS) and solar hot water and heating support

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Combi storage tank	Hydraulic block	1 mixed	2	12	
	Low loss header for heating circuits only				
Combi storage tank	Hydraulic block	3 mixed	2		2
	Low loss header for heating circuits only				
allSTOR buffer cylinder	Buffer cylinder charging using a condens- ing unit and solar heat	1 mixed	1	3	
allSTOR buffer cylinder	Buffer cylinder charging using a condens- ing unit and solar heat	3 mixed	1		6

A.4 aroTHERM or flexoTHERM

Cylinder		Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump		1 direct	8		
Monovalent domestic hot water cylinder for heat pump		1 direct 1 mixed	8	1	
Monovalent domestic hot water cylinder for heat pump		1 mixed 1 PV	8	1	
Monovalent domestic hot water cylinder for heat pump		2 mixed	8	5	

Cylinder	••	U U U	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump	Buffer cylinder for heating circuits only	3 mixed	8		3

A.5 aroTHERM and domestic hot water cylinder downstream of low loss header

Cylinder	Equipment	Heating cir- cuits	Setting for		
			System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump	Low loss header for heating circuits and cylinders	1 direct 1 mixed	16	1	
Monovalent domestic hot water cylinder for heat pump	Low loss header for heating circuits and cylinders	3 mixed	16		3

A.6 aroTHERM or flexoTHERM and solar hot water support

Cylinder	Equipment Heating cir- cuits	•	Setting for		
		System diagram	VR 70	VR 71	
Bivalent domestic hot water cylin- der for heat pump	Cylinder charging using a heat pump and solar heat	1 direct	8	6	
Bivalent domestic hot water cylin- der for heat pump	Cylinder charging using a heat pump and solar heat	3 mixed	8		2

A.7 aroTHERM or flexoTHERM and solar hot water and heating support

Cylinder Equipment Heating cir- cuits		•	Setting for			
	System diagram	VR 70	VR 71			
allSTOR buffer cylinder	Buffer cylinder charging using a heat pump and solar heat	1 mixed	8	3		
allSTOR buffer cylinder	Buffer cylinder charging using a heat pump and solar heat	3 mixed	8		6	

A.8 aroTHERM with system separation

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	1 direct	10		
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	1 direct 1 mixed	10	1	
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	2 mixed	10	5	
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	3 mixed	10		3

A.9 aroTHERM with auxiliary heater and system separation

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	1 direct	11		
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	1 direct 1 mixed	11	1	
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	2 mixed	11	5	
Monovalent domestic hot water cylinder for heat pump	Heat exchanger module for heat pump	3 mixed	11		3

A.10 aroTHERM with system separation and solar hot water support

Cylinder		Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Bivalent domestic hot water cylin- der for heat pump	Cylinder charging using a heat pump and solar heat Heat exchanger module for heat pump	1 direct	11	6	
Bivalent domestic hot water cylin- der for heat pump	Cylinder charging using a heat pump and solar heat Heat exchanger module for heat pump	3 mixed	11		2

A.11 geoTHERM 3 kW, hot water generation using a gas-fired condensing boiler (eBUS)

Cylinder		Heating cir- cuits	Setting for		
			System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing unit	1 direct	6		
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing unit Hydraulic module	1 direct 1 mixed	6	1	
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing unit 2-zone kit	1 direct 1 mixed	7	1	

A.12 aroTHERM or flexoTHERM, hot water generation using a gas-fired condensing boiler (eBUS)

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water	Cylinder charging using the condensing	1 direct	9	1	
cylinder or combi cylinder	unit	1 mixed			
	Hydraulic module				
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing unit	2 mixed	9	5	
	Hydraulic module				
Monovalent domestic hot water cylinder or combi cylinder	Cylinder charging using the condensing unit	3 mixed	9		3
	Hydraulic module				

A.13 aroTHERM with system separation, hot water generation using a gas-fired condensing boiler (eBUS)

Cylinder	Equipment	Heating cir-	Setting for		
		cuits	System diagram	VR 70	VR 71
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using the condensing unit Heat exchanger module for heat pump	1 direct	10		
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using the condensing unit Heat exchanger module for heat pump	1 direct 1 mixed	10	1	
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using the condensing unit Heat exchanger module for heat pump	2 mixed	10	5	
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using the condensing unit Heat exchanger module for heat pump	2 mixed	10		3

A.14 aroTHERM or flexoTHERM, hot water generation using a heat pump and gas-fired condensing boiler (eBUS)

Cylinder	Equipment	Heating cir-	Setting for			
		cuits	System diagram	VR 70	VR 71	
Monovalent domestic hot water	Cylinder charging using a condensing unit	1 direct	12	1		
cylinder for heat pump	and heat pump Hydraulic module	1 mixed				
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using a condensing unit and heat pump	2 mixed	12	5		
Buffer cylinder	Buffer cylinder for heating circuits only					
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using a condensing unit and heat pump	3 mixed	12		3	
Buffer cylinder	Buffer cylinder for heating circuits only					

A.15 aroTHERM with system separation, hot water generation using a heat pump and gas-fired condensing boiler (eBUS)

Cylinder	Equipment	Heating cir-	Setting for	Setting for			
		cuits	System diagram	VR 70	VR 71		
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using a condensing unit and heat pump Hydraulic module Heat exchanger module	1 direct 1 mixed	13	1			
allSTOR buffer cylinder	Buffer cylinder charging using a condens- ing unit and heat pump Hydraulic module Heat exchanger module	2 mixed	13	5			
Monovalent domestic hot water cylinder for heat pump	Cylinder charging using a condensing unit and heat pump Hydraulic module Heat exchanger module	3 mixed	13		3		

A.16 aroTHERM and gas-fired condensing boiler (eBUS), heat pump cascade option

Cylinder	Equipment	Heating cir-	Setting for	Setting for			
		cuits	System diagram	VR 70	VR 71		
Buffer cylinder	Domestic hot water cylinder downstream of low loss header/buffer cylinder Buffer cylinder charging using the system controller	1 direct 1 mixed	16	1			
allSTOR buffer cylinder	Domestic hot water cylinder downstream of low loss header/buffer cylinder Buffer cylinder charging using the system controller	1 direct 1 mixed	16	3			
Buffer cylinder	Domestic hot water cylinder downstream of low loss header/buffer cylinder Buffer cylinder charging using the system controller	3 mixed	16		3		
allSTOR buffer cylinder		3 mixed	16		6		

B Overview of the setting options

B.1 Installer level

Setting level	Values		Unit	Increment, select	Default setting	
	Min.	Max.				
Installer level →					1	
Enter code	000	999		1	000	
	I					
Installer level -> Service inform	ation → Enter	contact det	ails →			
Phone number	1	12	Numbers	0 to 9, blank spaces, hyphen		
Installer	1	12	Figures	A to Z, 0 to 9, space		
		-		•		
Installer level -> Service inform	ation → Servic	e date →				
Next service on			Date			
	· ·				·	
Installer level -> System config	uration →					
System						
Fault status	Current va	alue*				
Water pressure	Current va	alue	bar			
System status	Current va	alue		Standby, Heat. mode, Cooling,		
Freed mustered delay	0	10		DHW		
Frost protect. delay	0	12	h	1	4	
OT constant heating	off, -25	10	°C	1	off	
Control modules	Display			Software version		
Adaptive heat. curve	Current va			Yes, No	No	
Configure heat. circ.				All, Zone 1 to Zone 9	All	
Automatic cooling				Yes, No	No	
Start OT cooling	10	30	°C	1	21	
Source regeneration				Yes, No	No	
Current room air hum.	Current va		%			
Current dew point	Current va		°C			
Hybrid manager				triVAI, Biv. point	Biv. point	
Heat. bivalence point	-30	20	°C	1	0	
DHW bivalence point	-20	20	°C	1	-7	
Alternative point	off, -20	40	°C	1	off	
T. emergency mode	20	80	°C	1	25	
Auxiliary heater type				condens., non cond., Electric	condens.	
Energy supplier				HP off, BH off, HP&BH off, Heat. off, Cooling off, Ht./cl. off	HP off	
Auxiliary heater for				Inactive, Heating, DHW, DHW+heat.	DHW+heat.	
Noise reduction operation →	I	1	1		1	
Individual days and blocks				Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday and Monday - Friday, Saturday - Sunday, Monday - Sunday	Mon – Sun: 00:00- 00:00	
Period 1: Start – End Period 2: Start – End	00:00	24:00	h:min	00:10		
Period 3: Start – End						
System flow temp.	Current va	alue	°C			
Buff. cyl. offs.	0	15	К	1	10	
Actuation reversal				Off, On	On	

Setting level	Values		Unit	Increment, select	Default setting	
	Min.	Max.				
Actuation sequence	Current sequence of the heat generators without back-up heat- ing					
System diagram configuration				·	·	
System diagram	1	16		1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16	1	
Config.: VR71	1	11		1	3	
Config.: VR70 addr. 1 to Config.: VR70 addr. 3	1	12		1	1	
MA VR70, addr. 1 to MA VR70, addr. 3				No funct., Charg.pump, Circ. pump, Cool.signal, Leg. pump, HC pump	No funct.	
MA VR71				No funct., Charg.pump, Circ. pump, Cool.signal, Leg. pump, TD con.	No funct.	
Additional module						
Multi-funct. output 2				Circ. pump, Dehumid., Zone, Leg. pump, Not conn.	Circ. pump	
Aux. heater output				off, Stage 1, Stage 2, Stage 3	Stage 3	
Multi-funct. Input				Not conn., Circ. boost, PV	Circ. boost	
Heat pump 1 Heat generator 1 Additional module Status	Current va	ue		Standby, Heat. mode, Cooling,		
				DHW		
Current flow temp.	Current va	ue	° C			
HEATING1						
Type of circuit				Inactive, Heating, Fixed val., DHW, Ret.fl.incr. Pool,	Heating	
Status	Current va	ue		off, Heat. mode, Cooling, DHW		
Target flow temp.	Current va	ue	°C			
Target flow temp. pool	Current va	ue	°C			
Target flow temp.: Day	5	90	°C	1	65	
T.fl.temp.: Set-back	5	90	°C	1	0	
Target return temp.	15	80	°C	1	30	
Min. cool. fl. tgt temp.	7	24	°C	1	20	
Current temperature	Current va	ue	°C			
Excessive temp.	0	30	К	1	0	
Max limit outs.temp.	10	99	°C	1	21	
Minimum temperature	15	90	°C	1	15	
Maximum temperature	15	90	°C	1	90	
Auto Off mode				Eco, Set-back	Eco	
Heating curve	0.1	4.0		0.05	1.2	
Room temp. mod.				None, Temp. mod., Thermost.	None	
Cooling possible	Current va	ue		Yes, No	No	
	Current va	ue		Yes, No	Yes	
		1	°C	1	4	
Dew point monitoring	4	25				
Dew point monitoring End OT cooling Offset dew point	4 -10	25 10	K	0.5	2	
Dew point monitoring End OT cooling		10	-			
Dew point monitoring End OT cooling Offset dew point	-10	10 ue	-	0.5		

* If no fault is present, the status is **No fault**. If there is a fault, **Fault list** appears and you can read the fault message in the "Fault messages" section.

Setting level	Values		Unit	Increment, select	Default setting	
	Min.	Max.				
Zone activated	Current zo	one		Yes, No		
Day temperature	5	30	°C	0.5	20	
Set-back temp.	5	30	°C	0.5	15	
Room temperature	Current va	lue	°C			
Zone assignment				Without, VRC700, VR91 ad.1 to VR91 ad.8	VRC700	
Zone valve status	Current va	lue		Closed, Open		
DHW circuit	I				-	
Cylinder				active, Inactive	active	
Target flow temp.	Current va	lue	°C			
Current cyl. temp.	Current va	lue	°C			
Cyl. charging pump	Current va	lue		off, On		
Circulation pump	Current va	lue		off, On		
Anti-legionella day				off, Monday, Tuesday, Wednes- day, Thursday, Friday, Saturday, Sunday, Mon-Sun	off	
Anti-legionella time	00:00	24:00	hr:min	00:10	04:00	
Cyl. boost hysteresis	3	20	К	0.5	5	
Cylinder boost offset	0	40	K	1	25	
Max. cyl. charg. time	off , 15	120	min	5	60	
DHW req. anti-cy time	0	120	min	5	60	
Ch. pump overrun time	0	10	min	1	5	
Parallel cyl. charging				off, On	off	
Buffer cylinder						
Cyl. temp.: top	Current va	lue	°C			
Cyl. temp.: Bottom	Current va		0°			
DHW temp. sensor, top	Current va		0°C			
DHW tmp. sensor, bot.	Current va		0 00			
Heat. temp. sens., top	Current va		0			
Heat. temp. sens., bot.	Current va		℃			
Max.DHW fl.targ.temp.	45	80	℃	1	80	
Solar circuit	45	00			00	
	Current		°C		1	
Collector temp.	Current va		-C			
Solar pump status	Current va			off, On		
Solar pump runtime	Current va		h			
Reset runtime				No, Yes	No	
Solar yield sensor	Current va		°C			
Solar flow volume	0.0	165,0	l/min	0.1		
Solar pump boost				off, On	off	
Solar circuit prot.	110	150	°C	1	130	
Min. collector temp	0	99	°C	1	20	
Purging time	0	600	min	10		
Current flow rate	0.0	165,0	l/min	0.1		
Solar cylinder 1						
Switch-on diff.	2	25	К	1	12	
Switch-off diff.	1	20	К	1	5	
Maximum temperature	0	99	°C	1	75	
Cyl. temp.: Bottom	Current va	lue	°C			
2nd temperature difference co	ontrol		1	I	1	
* If no fault is present, the status	s is No fault . If t	nere is a fau	ult. Fault list a	ppears and you can read the fault messa	ige in the "Fault n	

* If no fault is present, the status is **No fault**. If there is a fault, **Fault list** appears and you can read the fault message in the "Fault messages" section.

Setting level	Values	Values		Increment, select	Default setting	
	Min.	Max.				
Switch-on diff.	1	20	К	1	5	
Switch-off diff.	1	20	К	1	5	
Minimum temperature	0	99	°C	1	0	
Maximum temperature	0	99	°C	1	99	
TD1 sensor	Current	/alue	°C			
TD2 sensor	Current	/alue	°C			
TD output				off, On	off	
Ventilation						
Air quality sensor 1	Current v	/alue	ppm			
Air quality sensor 2	Current v	/alue	ppm			
Max. air qual. sensor	400	3000	ppm	100	1000	
	1		I		1	
Installer level → Sensor/actua	ator test →					
Unit				No module, VR70 ad.1 to VR70 ad.3, VR71		
Actuator				No actuat., R1 to R12		
Sensor				No sensor, S1 to S13		
	1					
Installer level → HEATING1 →	Screed-drying	function →				
Day	00	29	Day	1	00	
Temperature	Current v	/alue	°C	1		
	I			1		
	0 →					
Installer level → Change code				1		

B.2 Functions for the heating circuit

Depending on what the heating circuit is used for (heating circuit/direct circuit, pool circuit, fixed value circuit, etc.), specific functions are available in the system control. You can use the table to read which functions appear on the system control's display for the selected type of circuit.

Available function	Setting for the Type of circuit function								
	Heating		Pool circuit	Fixed value	Increase in	DHW circuit			
	Direct cir- cuit	Mixing cir- cuit	-	circuit	return flow				
Reading the status of the heating circuit	x	x	x	x	-	-			
Reading the target flow temperature	x	x	x	x	-	-			
Reading the pool target flow temperature	-	-	x	-	-	-			
Setting the day target flow temperature	-	-	x	x	-	-			
Setting the set-back target flow temper- ature	-	-	x	x	-	-			
Setting the target return temperature	-	-	-	-	x	-			
Setting the domestic hot water	-	-	-	-	-	x			
Reading the actual temperature	-	x	x	x	x	-			
Reading the current cylinder temperature	-	-	-	-	-	x			
Setting the excess temperature	-	x	x	x	-	-			
Setting the max limit outs.temp.	x	x	x	x	-	-			
Setting the heating curve	x	x	-	-	-	-			
Setting the minimum flow temperature for the heating circuit	x	x	-	-	-	-			
Setting the maximum flow temperature for the heating circuit	x	x	-	-	-	-			

Available function	Setting for the Type of circuit function								
	Heating		Pool circuit	Fixed value	Increase in	DHW circuit			
	Direct cir- cuit	Mixing cir- cuit	_	circuit	return flow				
Specifying controller behaviour outside time periods	x	x	-	-	-	-			
Activating room temperature modulation	x	x	-	-	-	-			
Activating "Cooling possible"	x	х	-	-	-	-			
Activating the dew point monitoring	x	x	-	-	-	-			
Setting the minimum cooling target flow value	x	x	-	-	-	-			
Setting the outdoor temperature at which to end cooling	x	x	-	-	-	-			
Setting the dew point offset	x	х	-	-	-	-			
Reading the status of the external heat demand	x	x	x	x	-	-			
Reading the heating pump status	x	x	x	х	-	-			
Reading the status of the heating circuit mixer	-	-	x	x	x	-			
Reading the status of the cylinder char- ging pump	-	-	-	-	-	x			

C Connecting the actuators, sensors and sensor assignment for the VR 70 and VR 71

C.1 Legend for connecting the actuators and sensors

Legend point	Meaning
3fx	Heating pump for the heating circuit
3h	Anti-legionella pump
9bx	Zone valve for Zone x
9e	Domestic hot water generation prioritising diverter valve
9g	Diverter valve
9kxcl	Heating circuit mixer is closed for heating circuit x, in combination with 9kxop
9kxop	Heating circuit mixer is open for heating circuit x, in combination with 9kxcl
BH	Back-up boiler
BufBt	Lower cylinder temperature sensor in a buffer cylinder
BufBtDHW	Bottom cylinder temperature sensor for domestic hot water generation in a buffer cylinder (MSS)
BufBtHC	Top cylinder temperature sensor for the heating circuit in a buffer cylinder (MSS)
BufTopDHW	Top cylinder temperature sensor for domestic hot water generation in a buffer cylinder (MSS)
BufTopHC	Bottom cylinder temperature sensor for the heating circuit in a buffer cylinder (MSS)
COL	Collector temperature sensor
COLP	Solar pump
СР	Circulation pump
DEMx	Input for external heat demand for heating circuit x
DHW1	Cylinder temperature sensor
DHWBH	Cylinder temperature sensor for the auxiliary heater
DHWBtx	Bottom cylinder temperature sensor for solar cylinder x
DHWoff	2-port motorised valve for switching to cylinder, in combination with DHWon
DHWon	2-port motorised valve for switching to cylinder, in combination with DHWoff
DHWTopx	Top cylinder temperature sensor for solar cylinder x
eyield	Sensor for more precise solar yield, installed in the solar circuit flow. TD is used to calculate the solar yield between the flow and return
FSx	Flow temperature sensor for heating circuit x
LP/9e	Charging pump or domestic hot water generation prioritising diverter valve

Legend point	Meaning
MA	Multi-function output
PWM	Control signal for the solar pump station or the feedback signal
Solar Yield	Sensor for the solar yield, installed in the solar circuit return. TD is used to calculate the solar yield between the collector and return sensor
SysFlow	System flow temperature (e.g. in low loss header)
TD2	Temperature difference sensor 2
UVSolar	Solar circuit diverter valve
ZoneOff	2-port motorised valve for switching between zones, in combination with Zone On
ZoneOn	2-port motorised valve for switching between zones, in combination with Zone Off

C.2 Connecting the actuators and sensors to VR 70

Set value	R1	R2	R3/R4	R5/R6	S1	S2	S3	S4	S5	S6	S7
1	3f1	3f2	MA	9k2op/ 9k2cl	DHW1/ BufBt	DEM1	DEM2		SysFlow	FS2	
3	MA	3f2	LP/9e	9k2op/ 9k2cl	BufTop DHW	BufBt DHW	BufBt HC	SysFlow	BufTop HC	FS2	
5	3f1	3f2	9k1op/ 9k1cl	9k2op/ 9k2cl	SysFlow	DEM1	DEM2		FS1	FS2	
6	COLP	3h	MA	9b1	DHW1	DHWBt		SysFlow	COL	Solar Yield	PWM
12	COLP	3f1	9g/9e	9k1op/ 9k1cl	Solar Yield	DHWBt	TD1	TD2	COL	FS1	PWM

C.3 Connecting the actuators to VR 71

Set value	R1	R2	R3	R4	R5	R6	R7/R8	R9/R10	R11/R12
1	3f1	3f2	UVSolar	MA	COLP1	LP/9e	9k1op/ 9k1cl	9k2op/ 9k2cl	
2	3f1	3f2	3f3	MA	COLP1	LP/9e	9k1op/ 9k1cl	9k2op/ 9k2cl	9k3op/ 9k3cl
3	3f1	3f2	3f3	MA		LP/9e	9k1op/ 9k1cl	9k2op/ 9k2cl	9k3op/ 9k3cl
6	3f1	3f2	3f3	MA	UVSolar	LP/9e	9k1op/ 9k1cl	9k2op/ 9k2cl	9k3op/ 9k3cl

C.4 Connecting the sensors to VR 71

Set value	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
1	SysFlow	FS1	FS2	DHW Bt2	DHW Top1	DHW Bt1	COL1	Solar Yield	DEM3	TD1	TD2	PWM1
2	SysFlow	FS1	FS2	FS3	DHWTop	DHWBt	COL1	Solar Yield		TD1	TD2	PWM1
3	SysFlow	FS1	FS2	FS3	BufBt	DEM2	DEM3	DEM4	DHW1			
6	SysFlow	FS1	FS2	FS3	BufTop HC	BufBt HC	BufTop DHW	BufBt DHW	DEM2	DEM3	DEM4	DHW Bt2

C.5 VR 70 sensor assignment

Set value	S1	S2	S3	S4	S5	S6
1	VR 10				VR 10	VR 10
3	VR 10					
5	VR 10				VR 10	VR 10
6	VR 10	VR 10		VR 10	VR 11	VR 10
12	VR 10	VR 10	VR 10	VR 10	VR 11	VR 10

C.6 VR 71 sensor assignment

Set value	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
1	VR 10	VR 11	VR 10		VR 10	VR 10						
2	VR 10	VR 11	VR 10		VR 10	VR 10						
3	VR 10				VR 10	VR 10						
6	VR 10		1	1	VR 10							

D Overview of the fault messages and faults

Troubleshooting

In column 1 in the table, a \$ symbol is displayed after the sensor. The \$ symbol is a placeholder for the sensor number. The % symbol after various components is a placeholder for the address of the component. In both cases, on the display, the system control replaces the symbol with the specific sensor or specific address.

Code/meaning	Possible cause	Measure
Plug-in error	The system control is installed in the boiler	Install the system control in the living room.
Room temp. sensor fault	Room temperature sensor de- fective	 Replace the remote control.
No additional module connec-	The cable is defective	 Replace the cable.
tion	Incorrect plug connection	 Check the plug connection.
Additional module fault	The cable is defective	 Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Ventilation unit fault	Ventilation unit fault	 See instructions for the ventilation unit.
Ventilation unit connection	The cable is defective	► Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Communication fault: VR70 %	The cable is defective	► Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Communication fault: VR71	The cable is defective	► Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Communication fault: VR91 %	The cable is defective	► Replace the cable.
	Incorrect plug connection	Check the plug connection.
Communication fault: Heat gen-	The cable is defective	► Replace the cable.
erator %	Incorrect plug connection	 Check the plug connection.
Communication fault: Heat	The cable is defective	 Replace the cable.
pump %	Incorrect plug connection	 Check the plug connection.
Communication fault: VPM-W	The cable is defective	 Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Communication fault: VPM-S	The cable is defective	 Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Communication fault: VMS	The cable is defective	► Replace the cable.
	Incorrect plug connection	 Check the plug connection.
Sensor fault S \$ VR70 %	Sensor defective	► Replace the sensor.
Sensor fault S \$ VR71	Sensor defective	 Replace the sensor.
Fault: Heat generator %	Fault in the heat generator	See the instructions for the heat generator displayed.
Fault: Heat pump %	Fault in the heat pump	See the instructions for the heat pump displayed.
Fault: Solar pump %	Fault in the solar pump	 Check the solar pump.
Module not supported	Unsuitable module connected, e.g.VR 61, VR 81	Install a module that the system control supports.
Incorrect configuration: VR70	Incorrect set value for the FM3	 Set the correct set value for the FM3.
Incorrect configuration: VR71	Incorrect set value for the FM5	 Set the correct set value for the FM5.
System diagram selection incor- rect	Incorrectly selected basic sys- tem diagram code	 Set the correct basic system diagram code.
No remote control for heating circuit %	Missing remote control	 Connect the remote control.

Code/meaning	Possible cause	Measure
No VR70 for this system	Missing FM3	 Connect the FM3.
VR71 not supported for this system	FM5 connected in the heating installation	 Remove the FM5 from the heating installation.
	Incorrectly selected basic sys- tem diagram code	 Set the correct basic system diagram code.
Hot water temperature sensor S1 not connected	Domestic hot water temperature sensor S1 not connected	 Connect the domestic hot water temperature sensor to the FM3.
Incorrect configuration: MA2	Incorrectly connected FM3	1. Remove the FM3.
VWZ-AI		2. Select a suitable configuration.
	Incorrectly connected FM5	1. Remove the FM5.
		2. Select another configuration.
Cascades not supported	Incorrectly selected system dia- gram	 Set the correct system diagram that contains cascades.
Outdoor temperature sensor signal invalid F.521	Outdoor temperature sensor defective	 Replace the outdoor temperature sensor.
Incorrect configuration: VR70 % MA	Incorrectly selected setting value for the multi-function output	In the MA VR70, addr. 1 function, set the setting value that is appropriate for the connected component on the FM3's multi- function output.
Incorrect configuration: VR71	Incorrectly selected setting value for the multi-function output	In the MA VR71 function, set the setting value that is appropri- ate for the connected component on the FM5's multi-function output.

Troubleshooting

Symptom	Possible cause	Measure
Display remains dark	Software error	 Switch the mains switch on the heat generator that feeds the control off and back on again.
	No power supply on the heat generator	 Re-establish the power supply to the heat generator; this is the same power supply that feeds the control.
	The product is defective	Replace the product.
No changes in the display when the rotary knob is turned	Software error	 Switch the mains switch on the heat generator that feeds the control off and back on again.
	The product is defective	Replace the product.
No changes in the display when the selection buttons are	Software error	 Switch the mains switch on the heat generator that feeds the control off and back on again.
pressed	The product is defective	Replace the product.
Heat generator continues to heat once the room temperature	Incorrect value in the Room temp. mod. or Zone assign -	1. Set Thermost. or Temp. mod. in the Room temp. mod. function (→ Page 16).
has been reached	ment function	 In the zone in which the system control is installed, assign the system control's address in Zone assignment (→ Page 17).
The heating installation remains in domestic hot water mode	Heat generator cannot reach the max. target flow temperat- ure	 Set a lower value in the Max.DHW fl.targ.temp. function (→ Page 19).
Only one of several heating circuits is displayed	Heating circuits inactive	Activate the required heating circuit by defining the functional- ity in the Type of circuit function (→ Page 14).
Only one of several zones is displayed	Heating circuits inactive	Activate the required heating circuit by defining the functional- ity in the Type of circuit function (→ Page 14).
	Zone deactivated	Activate the required zone by setting the value to Yes in the Zone activated function (→ Page 16).
It is not possible to switch to the installer level	You do not know the code for the installer level	► Reset the system control to the factory settings (→ Page 9).

E Maintenance messages

The maintenance message **Service heat pump 1** is an example of a maintenance message that may appear for heat pumps 1 to 7.

The maintenance message **Service heat generator 1** is an example of a maintenance message that may appear for heat generators 1 to 7.

#	Code/meaning	Description	Maintenance work	Interval	
1	Service heat pump 1	The heat pump requires main- tenance work.	Refer to the operating or install- ation instructions for the relev- ant heat pump for information on the maintenance work re- quired	See the operating or installation instructions for the heat pump	
2	Service heat generator 1	The heat generator requires maintenance work.	Refer to the operating or install- ation instructions for the relev- ant heat generator for informa- tion on the maintenance work required	See the operating or installation instructions for the heat gener- ator	
3	Service ventila- tion unit	The ventilation unit requires maintenance work.	Refer to the operating or install- ation instructions for the relev- ant ventilation unit for informa- tion on the maintenance work required	See the operating or installation instructions for the ventilation unit	
4	Low water pres- sure	The water pressure is too low in the heating installation.	Refer to the operating or install- ation instructions for the relev- ant heat generator for informa- tion on filling with water	See the operating or installation instructions for the heat gener- ator	
5	Service date Next service on	Date on which maintenance is due for the heating installation.	Carry out the required mainten- ance work	Date entered in the control	

Index

Α

A	
Activating automatic cooling	10
Activating cooling	16
Activating Room temp. mod.	16
Activating Solar pump boost	19
Activating Source regeneration	10
Activating the actuation reversal for the cascade	12
Activating the actuation sequence for the cascade	12
Activating the adaptive heating curve	10
Activating the cylinder charging	18
Activating the dew point monitoring	16
Activating the parallel cylinder charging	18
Activating the screed-drying function	21
Air quality sensor, setting the maximum value	21
Assigning a zone	17
Assigning a zone to the remote control unit	17
Assigning the system control to a zone	17
Auxiliary heater, setting the output	13
В	

Bottom cylinder temperature sensor, reading the value...... 20 Buffer cylinder for the heating circuit, offset for charging 12 C

CE marking
Changing the code, installer level
Circulation pump, reading the status
Competent person
Configuring the heating circuit10
Configuring the multi-function input
Configuring the multi-function output
Configuring the VR 70 12
Configuring the VR 70's multi-function output
Configuring the VR 71 12
Configuring the VR 71's multi-function output
Connecting a system control to the heat generator7
Connecting a system control to the ventilation unit7
Connecting the VRC 693 outside temperature sensor7
Connecting the VRC 9535 outside temperature sensor7
Cooling, setting the target flow temperature
Cylinder charging pump, reading the status
Cylinder charging, setting the hysteresis
Cylinder, setting the maximum charging time
D
Deactivating the zone16
Deactivating units
Defining the anti-legionella function, day
Defining the anti-legionella function, time
Defining the basic system diagram
Defining the boiler type11
Defining the hybrid manager11
Defining the offset, domestic hot water cylinder charging 18
Defining the overrun time, cylinder pump
Defining the switch-off differential, second differential
temperature control
Defining the switch-off differential, solar charging
Defining the switch-on differential, second differential
temperature control
Defining the switch-on differential, solar charging20
Defining the temperature of the solar cylinder
Deleting personal data
Determining the installation site of the outdoor temperature
sensor5
Dew point, setting the offset

Differential temperature control, reading the status	21
Differential temperature sensor 1, reading the value	
Differential temperature sensor 2, reading the value	
Displaying fault messages, list	22
Disposing of batteries	22
Disposing of the product	
Documents	
Domestic hot water cylinder charging, defining the offset	
Domestic hot water cylinder, reading the actual temperat-	
ure	17
Domestic hot water cylinder, setting the set target	
temperature	17
Ε	
Entering contact details	0
Entering the service date	9
F	
Frost	4
н	
Handing over	21
Heat generator, connecting a system control	
Heat generator, installing the system control	7
Heat generator, removing the product	22
Heating circuit mixer, reading the status	16
Heating circuit type configuration	
Heating circuit type system configuration	
Heating installation, starting up	
Heating pump, reading the status	16
Hot water demand, setting the anti-cycling time	18
I	
Installation, system control in the living room	6
Installer level, changing the code	
Installing the system control, heat generator	
Installing the system control, living room	6
Installing the VRC 693 outside temperature sensor	5
Installing the VRC 9535 outside temperature sensor	
-	
Installing, VRC 693 outside temperature sensor	
Installing, VRC 9535 outside temperature sensor	
Intended use	4
L	
Lines, maximum length	5
Lines, minimum cross-section	
Lines, selecting	
Living room, installing the system control	
Living room, removing the product	22
Μ	
Maintenance message	22
-	22
N	_
Nomenclature	5
0	
Operating and display functions	9
Outdoor temperature sensor, determining the installation	
site	
P	
•	_
Polarity	
Preparatory work for starting up the heating installation	8
Preparatory work, starting up the heating installation	8
Q	
Qualification	л
	4
R	
Reading the actual temperature, domestic hot water	
cylinder	17
Reading the actuation sequence for the cascade	12
Reading the air quality sensor	
Reading the back-up boiler's status	
1 reading the back-up build 5 status	13

Reading the bottom cylinder temperature for domestic hot
water
Reading the bottom cylinder temperature for heating 19
Reading the bottom cylinder temperature for the buffer
cylinder
Reading the collector temperature
Reading the current dew point11
Reading the current flow rate
Reading the current flow temperature for the additional
module13
Reading the current flow temperature for the heat
generator
Reading the current flow temperature for the heat pump 13
Reading the dew point11
Reading the domestic hot water circuit's flow temperature 17
Reading the fault status10
Reading the heat generator's status
Reading the heat pump's status
Reading the heating circuit's actual temperature
Reading the heating circuit's flow temperature
Reading the room air humidity11
Reading the room temperature
Reading the running time, solar pump
Reading the software version
Reading the status
Circulation pump
Cylinder charging pump
Heating circuit mixer
Heating pump
Solar pump
Reading the status of the external heat demand
Reading the status of the heating circuit
Reading the status, differential temperature control
Reading the swimming pool flow temperature
Reading the system status
Reading the top cylinder temperature for domestic hot
water
Reading the top cylinder temperature for heating
Reading the top cylinder temperature for the buffer
Reading the top cylinder temperature for the buffer cylinder
Reading the top cylinder temperature for the buffer cylinder
Reading the top cylinder temperature for the buffer cylinder
Reading the top cylinder temperature for the buffer cylinder
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the water pressure10
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature10Reading the zone valve status17
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the water pressure10
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature10Reading the zone valve status17
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature10Reading the zone valve status17Recycling/disposing of packaging22
Reading the top cylinder temperature for the buffer cylinder 18 Reading the value, bottom cylinder temperature sensor 20 Reading the value, differential temperature sensor 1 20 Reading the value, differential temperature sensor 2 20 Reading the value, solar yield sensor 19 Reading the value, system flow temperature 12 Reading the value system flow temperature 10 Reading the zone valve status 17 Recycling/disposing of packaging 22 Regulations 4
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Removing the product, living room22
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature10Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the product, status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the set values9
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the value status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the set values9Resetting the values9
Reading the top cylinder temperature for the buffer cylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the value solar yield sensor10Reading the value system flow temperature12Reading the value system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the set values9Resetting the values9Resetting the values9Resetting times9
Reading the top cylinder temperature for the buffer cylinder 18 Reading the value, bottom cylinder temperature sensor 20 Reading the value, differential temperature sensor 1 20 Reading the value, differential temperature sensor 2 20 Reading the value, solar yield sensor 19 Reading the value, system flow temperature 12 Reading the value, system flow temperature 12 Reading the zone valve status 17 Recycling/disposing of packaging 22 Regulations 4 Removing the product, heat generator 22 Resetting the values 9 Resetting the values 9 Resetting the values 9 Resetting times 9 Resetting times 9 Resetting to the factory settings 9 S S
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the value system flow temperature12Reading the value system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the values9Resetting the values9Resetting the values9Resetting times9Resetting times9Resetting to the factory settings9
Reading the top cylinder temperature for the buffer cylinder 18 Reading the value, bottom cylinder temperature sensor 20 Reading the value, differential temperature sensor 1 20 Reading the value, differential temperature sensor 2 20 Reading the value, solar yield sensor 19 Reading the value, system flow temperature 12 Reading the value, system flow temperature 12 Reading the zone valve status 17 Recycling/disposing of packaging 22 Regulations 4 Removing the product, heat generator 22 Resetting the values 9 Resetting the values 9 Resetting the values 9 Resetting times 9 Resetting times 9 Resetting times 9 Resetting to the factory settings 9 Second differential temperature control, defining the switch-
Reading the top cylinder temperature for the buffer 18 Reading the value, bottom cylinder temperature sensor 20 Reading the value, differential temperature sensor 1 20 Reading the value, differential temperature sensor 2 20 Reading the value, solar yield sensor 19 Reading the value, system flow temperature 12 Reading the value, system flow temperature 12 Reading the value, system flow temperature 12 Reading the zone valve status 17 Recycling/disposing of packaging 22 Regulations 4 Removing the product, heat generator 22 Resetting the running time, solar pump 19 Resetting the values 9 Resetting the values 9 Resetting times 9 Resetting times 9 Resetting to the factory settings 9 Second differential temperature control, defining the switch-off differential 20
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the value, system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the values9Resetting the values9Resetting times9Resetting to the factory settings9SSecond differential temperature control, defining the switch-off differential temperature control, defining the switch-20Second differential temperature control, defining the switch-20
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the values9Resetting the values9Resetting times9Resetting to the factory settings9SSecond differential temperature control, defining the switch- off differential20Second differential temperature control, defining the switch- on differential20
Reading the top cylinder temperature for the buffercylinder18Reading the value, bottom cylinder temperature sensor20Reading the value, differential temperature sensor 120Reading the value, differential temperature sensor 220Reading the value, solar yield sensor19Reading the value, system flow temperature12Reading the zone valve status17Recycling/disposing of packaging22Regulations4Removing the product, heat generator22Resetting the running time, solar pump19Resetting the values9Resetting the values9Resetting to the factory settings9SSecond differential temperature control, defining the switch- of differential20Selecting the back-up boiler support12

Selecting the wiring centre, sensor test	21
Sensor test, selecting the wiring centre	
Setting End OT cooling	
Setting Start OT cooling	10
Setting the alternative point	11
Setting the anti-cycling time, hot water demand	18
Setting the collector temperature	
Setting the cooling start temperature	
Setting the cooling start temperature	
Setting the cylinder	
Setting the day target flow temperature	
Setting the day temperature	
Setting the domestic hot water bivalence point	11
Setting the domestic hot water target flow temperature	19
Setting the excess temperature	
Setting the flow rate, solar circuit	
Setting the frost protection delay	
Setting the heating bivalence point	
Setting the heating curve	
Setting the hysteresis, cylinder charging	
Setting the maximum charging time, cylinder	18
Setting the maximum target flow temperature	15
Setting the maximum temperature	20
Setting the minimum target flow temperature	15
Setting the minimum temperature	
Setting the offset for charging the buffer cylinder for the	20
heating circuit	12
Setting the offset, dew point	
Setting the OT constant heating	
Setting the output, auxiliary heater	
Setting the purging time	
Setting the set-back target flow temperature	14
Setting the set-back temperature	16
Setting the solar circuit protection	
Setting the switch-off threshold	
Setting the target cylinder temperature, domestic hot water	
cylinder	
Setting the target flow temperature, cooling	
Setting the target flow temperature, maximum	
Setting the target flow temperature, minimum	
Setting the target return temperature	
Setting the temperature for limp home mode	11
Setting the temperature when the heat pump fails	11
Setting the temperature, day	16
Setting the temperature, set-back	
Setting Type of circuit	
Solar charging, defining the switch-off differential	
Solar charging, defining the switch-on differential	
Solar circuit, setting the flow rate	
Solar pump, reading the running time	
Solar pump, reading the status	
Solar pump, resetting the running time	19
Solar yield sensor, reading the value	
Specifying the controller behaviour	
Starting up the heating installation	
Starting up the product	
Start-up	
Start-up, preparatory work	
System flow temperature, reading the value	12
Т	
Time programme	
Noise reduction mode	12
Tool	4

Z	
Zone activated	
Zone assignment	17

Supplier Vaillant Ltd. Nottingham Road Belper Derbyshire DE56 1JT Telephone 0330 100 3143 info@vaillant.co.uk www.vaillant.co.uk

Publisher/manufacturer Vaillant GmbH

 Berghauser Str. 40
 D-42859 Remscheid

 Tel. +49 2191 18 0
 Fax +49 2191 18 2810

 info@vaillant.de
 www.vaillant.de

© These instructions, or parts thereof, are protected by copyright and may be reproduced or distributed only with the manufacturer's written consent. Subject to technical modifications.